Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei A. Kramerov is active.

Publication


Featured researches published by Andrei A. Kramerov.


Experimental Eye Research | 2003

Human diabetic corneas preserve wound healing, basement membrane, integrin and MMP-10 differences from normal corneas in organ culture

Andrea Kabosova; Andrei A. Kramerov; Annette M. Aoki; Gillian Murphy; James D. Zieske; Alexander V. Ljubimov

The authors have previously documented decreased epithelial basement membrane (BM) components and alpha3beta1 epithelial integrin, and increased expression of matrix metalloproteinase (MMP)-10 in corneas of patients with diabetic retinopathy (DR) compared to normal corneas. The purpose of this study was to examine if organ-cultured DR corneas exhibited the same alterations in wound healing and diabetic marker distribution as the autopsy DR corneas. Twenty normal and 17 DR corneas were organ-cultured in serum-free medium over agar-collagen gel at the air-liquid interface for up to 45 days. Circular 5 mm central epithelial wounds were made with n-heptanol, the procedure that will preserve fragile diabetic corneal BM. Wound healing was monitored microscopically every 12 hr. Distribution of diabetic corneal epithelial markers including laminin-10 alpha5 chain, nidogen-1/entactin, integrin alpha3beta1, and MMP-10, was examined by immunofluorescence. Normal corneas healed the central epithelial defect within 3 days (mean=2.3 days), whereas DR corneas on average healed about two times slower (mean=4.5 days). In wounded and completely healed organ-cultured corneas, the patterns of studied markers were the same as in the unwounded organ-cultured corneas. This concerned both normal and DR corneas. As in vivo, normal organ-cultured corneas had continuous staining for laminin-10 and nidogen-1/entactin in the epithelial BM, strong and homogeneous staining for both chains of alpha3beta1 integrin in epithelial cells, and little if any staining for MMP-10. Organ-cultured DR corneas also had marker patterns specific for in vivo DR corneas: interrupted to no staining for laminin-10 and nidogen-1/entactin in the epithelial BM, areas of weak or disorganized alpha3beta1 integrin in epithelial cells, and significant MMP-10 staining in the epithelium and keratocytes. Fibrotic extracellular matrix and myofibroblast markers were largely absent. Thus, epithelial wound healing was much slower in organ-cultured DR corneas than in normal corneas, in complete accordance with clinical data in diabetic patients. DR corneas in organ culture preserved the same marker abnormalities as in vivo. The marker distribution was unchanged in wounded and healed organ-cultured corneas, compared to unwounded corneas. The established corneal organ culture provides an adequate system for elucidating mechanisms of epithelial alterations in human DR corneas.


Molecular and Cellular Biochemistry | 2008

Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites

Andrei A. Kramerov; Mehrnoosh Saghizadeh; Sergio Caballero; Lynn C. Shaw; S. Li Calzi; Maria Bretner; Mathias Montenarh; Lorenzo A. Pinna; Maria B. Grant; Alexander V. Ljubimov

Ubiquitous protein kinase CK2 participates in a variety of key cellular functions. We have explored CK2 involvement in angiogenesis. As shown previously, CK2 inhibition reduced endothelial cell proliferation, survival and migration, tube formation, and secondary sprouting on Matrigel. Intraperitoneally administered CK2 inhibitors significantly reduced preretinal neovascularization in a mouse model of proliferative retinopathy. In this model, CK2 inhibitors had an additive effect with somatostatin analog, octreotide, resulting in marked dose reduction for the drug to achieve the same effect. CK2 inhibitors may thus emerge as potent future drugs aimed at inhibiting pathological angiogenesis. Immunostaining of the retina revealed predominant CK2 expression in astrocytes. In human diabetic retinas, mRNA levels of all CK2 subunits decreased, consistent with increased apoptosis. Importantly, a specific CK2 inhibitor prevented recruitment of bone marrow-derived hematopoietic stem cells to areas of retinal neovascularization. This may provide a novel mechanism of action of CK2 inhibitors on newly forming vessels.


Investigative Ophthalmology & Visual Science | 2010

Normalization of wound healing and diabetic markers in organ cultured human diabetic corneas by adenoviral delivery of c-Met gene.

Mehrnoosh Saghizadeh; Andrei A. Kramerov; Fu Shin X Yu; Maria G. Castro; Alexander V. Ljubimov

Purpose. Diabetic corneas display altered basement membrane and integrin markers, increased expression of proteinases, decreased hepatocyte growth factor (HGF) receptor, c-met proto-oncogene, and impaired wound healing. Recombinant adenovirus (rAV)-driven c-met overexpression in human organ-cultured corneas was tested for correction of diabetic abnormalities. Methods. Forty-six human corneas obtained postmortem from 23 donors with long-term diabetes (5 with diabetic retinopathy) were organ cultured and transduced with rAV-expressing c-met gene (rAV-cmet) under the cytomegalovirus promoter at approximately 10(8) plaque-forming units per cornea for 48 hours. Each control fellow cornea received control rAV (rAV expressing the beta-galactosidase gene or vector alone). After an additional 4 to 5 days of incubation, 5-mm epithelial wounds were created with n-heptanol, and healing was monitored. The corneas were analyzed afterward by immunohistochemistry and Western blot analysis. Signaling molecule expression and role was examined by immunostaining, phosphokinase antibody arrays, Western blot analysis, and inhibitor analysis. Results. rAV-cmet transduction led to increased epithelial staining for c-met (total, extracellular, and phosphorylated) and normalization of the patterns of select diabetic markers compared with rAV-vector-transduced control fellow corneas. Epithelial wound healing time in c-met-transduced diabetic corneas decreased twofold compared with rAV-vector-transduced corneas and became similar to normal. c-Met action apparently involved increased activation of p38 mitogen-activated protein kinase. c-Met transduction did not change tight junction protein patterns, suggesting unaltered epithelial barrier function. Conclusions. rAV-driven c-met transduction into diabetic corneas appears to restore HGF signaling, normalize diabetic marker patterns, and accelerate wound healing. c-Met gene therapy could be useful for correcting human diabetic corneal abnormalities.


Developmental Dynamics | 2003

Alternative splicing of papilin and the diversity of Drosophila extracellular matrix during embryonic morphogenesis

Irina Kramerova; Andrei A. Kramerov; John H. Fessler

Papilins are extracellular matrix proteins that share a particular, common order of types of protein domains. They occur widely, from nematodes to man, and can differ in the number of repeats of a given type of domain. Protein variety is increased by differential splicing of pre‐mRNA. We report that Drosophila, which has a compact genome, expresses three splice variants of papilin during embryogenesis in developmentally defined patterns. These isoforms have different numbers of Kunitz and IgC2 domains. The papilin isoforms are expressed in specific cell types and contribute to different extracellular matrices in gastrulation folds, early mesoderm, heart formation, basement membranes, and elaboration of the excorporeal peritrophic membrane that lines the gut. This finding indicates an unexpectedly broad spectrum of different pericellular matrices in Drosophila embryos. Such papilin‐containing matrices have developmental as well as functional significance, as we previously showed that both suppression of papilin synthesis and ectopic overexpression lethally disrupt organogenesis. Developmental Dynamics 226:634–642, 2003.


Developmental Dynamics | 1999

Mucinoprotein Is a Universal Constituent of Stable Intercellular Bridges in Drosophila melanogaster Germ Line and Somatic Cells

Irina A. Kramerova; Andrei A. Kramerov

Intercellular bridges formed by incomplete cytokinesis may be important in a variety of processes, including synchronization of mitotic and meiotic divisions in animal cells. Using specific antibodies against a mucin‐type glycoprotein (Kramerov et al. 1996 FEBS Lett. 378:213–218) from Drosophila melanogaster cultured embryonic cells, we showed that this glycoprotein is located in all cytoplasmic bridges found in various germline and somatic tissues. In the ovary, immunostaining of ring canals connecting germ cells can be detected in the very early stages at the germarium region 1 where first gonial divisions take place, and the immunostaining appears to persist through late stages when transport of cytoplasm from nurse cells to a growing oocyte occurs. Each ring canal is made up of an outer and an inner rim. Mucin glycoprotein appears to be one of the first proteins localized to the outer rim, which is a derivative of the arrested cleavage furrow. The known ring canal proteins, phosphotyrosine‐containing protein(s), F‐actin, hts‐ and kelch proteins, are localized to the inner rim at a later developmental time. Similarly, mucin glycoprotein is recruited early to ring canals connecting mitotic primary spermatocytes in both larval and adult testes. Mucin glycoprotein was found to be present in intercellular bridges (small ring canals) in somatic cells, including follicular epithelium in ovary and imaginal disc cells. Intercellular bridges were observed for the first time in a subset of cells in the larval brain. Thus, mucin glycoprotein is the only protein hitherto found in all known types of stable intercellular bridges and may be an important constituent of a backbone needed for assembly and preservation of this particular type of cell‐cell contact. Dev Dyn 1999;216:349–360. ©1999 Wiley‐Liss, Inc.


PLOS ONE | 2013

A simple alkaline method for decellularizing human amniotic membrane for cell culture.

Mehrnoosh Saghizadeh; Michael A. Winkler; Andrei A. Kramerov; David M. Hemmati; Chantelle A. Ghiam; Slobodan D. Dimitrijevich; Dhruv Sareen; Loren Ornelas; Homayon Ghiasi; William J. Brunken; Ezra Maguen; Yaron S. Rabinowitz; Clive N. Svendsen; Katerina Jirsova; Alexander V. Ljubimov

Human amniotic membrane is a standard substratum used to culture limbal epithelial stem cells for transplantation to patients with limbal stem cell deficiency. Various methods were developed to decellularize amniotic membrane, because denuded membrane is poorly immunogenic and better supports repopulation by dissociated limbal epithelial cells. Amniotic membrane denuding usually involves treatment with EDTA and/or proteolytic enzymes; in many cases additional mechanical scraping is required. Although ensuring limbal cell proliferation, these methods are not standardized, require relatively long treatment times and can result in membrane damage. We propose to use 0.5 M NaOH to reliably remove amniotic cells from the membrane. This method was used before to lyse cells for DNA isolation and radioactivity counting. Gently rubbing a cotton swab soaked in NaOH over the epithelial side of amniotic membrane leads to nearly complete and easy removal of adherent cells in less than a minute. The denuded membrane is subsequently washed in a neutral buffer. Cell removal was more thorough and uniform than with EDTA, or EDTA plus mechanical scraping with an electric toothbrush, or n-heptanol plus EDTA treatment. NaOH-denuded amniotic membrane did not show any perforations compared with mechanical or thermolysin denuding, and showed excellent preservation of immunoreactivity for major basement membrane components including laminin α2, γ1-γ3 chains, α1/α2 and α6 type IV collagen chains, fibronectin, nidogen-2, and perlecan. Sodium hydroxide treatment was efficient with fresh or cryopreserved (10% dimethyl sulfoxide or 50% glycerol) amniotic membrane. The latter method is a common way of membrane storage for subsequent grafting in the European Union. NaOH-denuded amniotic membrane supported growth of human limbal epithelial cells, immortalized corneal epithelial cells, and induced pluripotent stem cells. This simple, fast and reliable method can be used to standardize decellularized amniotic membrane preparations for expansion of limbal stem cells in vitro before transplantation to patients.


Brain Research Bulletin | 2010

Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes

Mehrnoosh Saghizadeh; Andrei A. Kramerov; Yousha Yaghoobzadeh; Jinwei Hu; Julia Y. Ljubimova; Keith L. Black; Maria G. Castro; Alexander V. Ljubimov

Our previous data suggested the involvement of matrix metalloproteinase-10 (MMP-10) and cathepsin F (CTSF) in the basement membrane and integrin changes occurring in diabetic corneas. These markers were now examined in normal human organ-cultured corneas upon recombinant adenovirus (rAV)-driven transduction of MMP-10 and CTSF genes. Fifteen pairs of normal autopsy human corneas were used. One cornea of each pair was transduced with rAV expressing either CTSF or MMP-10 genes. 1-2 x 10(8) plaque forming units of rAV per cornea were added to cultures for 48 h with or without sildenafil citrate. The fellow cornea of each pair received control rAV with vector alone. After 6-10 days additional incubation without rAV, corneas were analyzed by Western blot or immunohistochemistry, or tested for healing of 5-mm circular epithelial wounds caused by topical application of n-heptanol. Sildenafil significantly increased epithelial transduction efficiency, apparently by stimulation of rAV endocytosis through caveolae. Corneas transduced with CTSF or MMP-10 genes or their combination had increased epithelial immunostaining of respective proteins compared to fellow control corneas. Staining for diabetic markers integrin alpha(3)beta(1), nidogen-1, nidogen-2, and laminin gamma2 chain became weaker and irregular upon proteinase transduction. Expression of phosphorylated Akt was decreased in proteinase-transduced corneas. Joint overexpression of both proteinases led to significantly slower corneal wound healing that became similar to that observed in diabetic corneas. The data suggest that MMP-10 and CTSF may be responsible for abnormal marker patterns and impaired wound healing in diabetic corneas. Inhibition of these proteinases in diabetic corneas may alleviate diabetic keratopathy symptoms.


Investigative Ophthalmology & Visual Science | 2011

Egr1 expression is induced following glatiramer acetate immunotherapy in rodent models of glaucoma and Alzheimer's disease.

Sharon Bakalash; Michael Pham; Yosef Koronyo; Brenda C. Salumbides; Andrei A. Kramerov; Hillary Seidenberg; Dror Berel; Keith L. Black; Maya Koronyo-Hamaoui

PURPOSE Immunization with glatiramer acetate (GA) alleviates the neuropathology associated with glaucoma and Alzheimers disease (AD) in rodent models. This research was undertaken to screen for molecular factors underlying GA-induced neuroprotective mechanisms in these models of chronic neurodegeneration. METHODS Gene expression profiles were analyzed in GA-immunized versus nonimmunized elevated-intraocular pressure (IOP) rat models of glaucoma by using whole genome cDNA microarrays and were further validated by quantitative real-time PCR analysis. A gene, prominently upregulated by GA in elevated IOP retina, was further studied in APP(SWE)/PS1(ΔE9)-transgenic (AD-Tg) mice after GA immunization. RESULTS Seven days after treatment with GA, numerous genes were regulated in the retinas of rats with elevated IOP. Comprehensive functional classification and DAVID/KEGG enrichment analysis of GA-induced differentially expressed genes revealed annotation terms and pathways involved in neuroprotection, immune responses, cell communication, and regeneration. Specifically, increased mRNA levels of an early growth response (Egr) 1 gene were evident in GA-immunized retinas with elevated IOP. In AD-Tg mice, a significant increase in hippocampal EGR1 protein levels was also found in response to GA immunization. Nuclear EGR1 in the dentate gyrus colocalized more frequently with doublecortin-positive and Ki67 proliferating neural progenitors in GA-immunized as compared to nonimmunized AD-Tg mice. Further, EGR1 levels were negatively correlated with hippocampal amyloid-β plaque burden. CONCLUSIONS This study presents global gene expression profiles associated with GA immunization in a glaucoma rat model. Moreover, it identifies EGR1 transcription factor as a potential mediator for GA-induced neuroprotection in both glaucoma and AD.


Journal of Controlled Release | 2016

Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme

Szu-Ting Chou; Rameshwar Patil; Anna Galstyan; Pallavi R. Gangalum; Webster K. Cavenee; Frank Furnari; Vladimir Ljubimov; Alexandra Chesnokova; Andrei A. Kramerov; Hui Ding; Vida Falahatian; Leila Mashouf; Irving Fox; Keith L. Black; Eggehard Holler; Alexander V. Ljubimov; Julia Y. Ljubimova

Glioblastoma multiforme (GBM) remains the deadliest brain tumor in adults. GBM tumors are also notorious for drug and radiation resistance. To inhibit GBMs more effectively, polymalic acid-based blood-brain barrier crossing nanobioconjugates were synthesized that are delivered to the cytoplasm of cancer cells and specifically inhibit the master regulator serine/threonine protein kinase CK2 and the wild-type/mutated epidermal growth factor receptor (EGFR/EGFRvIII), which are overexpressed in gliomas according to The Cancer Genome Atlas (TCGA) GBM database. Two xenogeneic mouse models bearing intracranial human GBMs from cell lines LN229 and U87MG that expressed both CK2 and EGFR at different levels were used. Simultaneous knockdown of CK2α and EGFR/EGFRvIII suppressed their downstream prosurvival signaling. Treatment also markedly reduced the expression of programmed death-ligand 1 (PD-L1), a negative regulator of cytotoxic lymphocytes. Downregulation of CK2 and EGFR also caused deactivation of heat shock protein 90 (Hsp90) co-chaperone Cdc37, which may suppress the activity of key cellular kinases. Inhibition of either target was associated with downregulation of the other target as well, which may underlie the increased efficacy of the dual nanobioconjugate that is directed against both CK2 and EGFR. Importantly, the single nanodrugs, and especially the dual nanodrug, markedly suppressed the expression of the cancer stem cell markers c-Myc, CD133, and nestin, which could contribute to the efficacy of the treatments. In both tumor models, the nanobioconjugates significantly increased (up to 2-fold) animal survival compared with the PBS-treated control group. The versatile nanobioconjugates developed in this study, with the abilities of anti-cancer drug delivery across biobarriers and the inhibition of key tumor regulators, offer a promising nanotherapeutic approach to treat GBMs, and to potentially prevent drug resistance and retard the recurrence of brain tumors.


Journal of Cellular Biochemistry | 2012

Cell Rounding in Cultured Human Astrocytes and Vascular Endothelial Cells Upon Inhibition of CK2 Is Mediated by Actomyosin Cytoskeleton Alterations

Andrei A. Kramerov; Khalil Ahmed; Alexander V. Ljubimov

Protein kinase CK2 participates in a wide range of cellular events, including the regulation of cellular morphology and migration, and may be an important mediator of angiogenesis. We previously showed that in the retina, CK2 immunolocalizes mostly to vascular endothelium and astrocytes in association with the cytoskeleton. Additionally, CK2 inhibitors significantly reduced retinal neovascularization and stem cell recruitment in the mouse model of oxygen‐induced proliferative retinopathy. We have also shown that CK2 and F‐actin co‐localized in actin stress fibers in microvascular endothelial cells, and that highly specific CK2 inhibitors caused cell rounding in astrocytes and microvascular endothelial cells, which was alleviated by serum that promotes spreading by Rho/Rho‐kinase (RhoK) activation of myosin II. Therefore, we examined a possible role of CK2 in the regulation of actin–myosin II‐based contractility. Treatment with CK2 inhibitors correlated with disassembly of actomyosin stress fibers and cell shape changes, including cytoplasmic retraction and process formation that were similar to those occurring during astrocyte stellation. Low doses of specific inhibitors of kinases (RhoK and MLCK) that phosphorylate myosin light chain (MLC) enhanced the effect of suboptimal CK2 inhibition on cell shape. Such striking stellation‐like alteration was accompanied by decreased level of phospho‐MLC, thus implying a CK2 role in regulation of actomyosin cytoskeleton. Our results suggest an important role of CK2 in the control of cell contractility and motility, which may account for suppressing effect of CK2 inhibition on retinal neovascularization. Together, our data implicate protein kinase CK2 for the first time in stellation‐like morphological transformation. J. Cell. Biochem. 113: 2948–2956, 2012.

Collaboration


Dive into the Andrei A. Kramerov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ezra Maguen

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Julia Y. Ljubimova

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Khalil Ahmed

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annette M. Aoki

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge