Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Y. Ljubimova is active.

Publication


Featured researches published by Julia Y. Ljubimova.


Biochimica et Biophysica Acta | 2012

The transferrin receptor and the targeted delivery of therapeutic agents against cancer

Tracy R. Daniels; Ezequiel Bernabeu; Jose A. Rodriguez; Shabnum Patel; Maggie Kozman; Diego A. Chiappetta; Eggehard Holler; Julia Y. Ljubimova; Gustavo Helguera; Manuel L. Penichet

BACKGROUND Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. SCOPE OF REVIEW In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. MAJOR CONCLUSIONS Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. GENERAL SIGNIFICANCE The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. This article is part of a Special Issue entitled Transferrins: molecular mechanisms of iron transport and disorders.


Advanced Drug Delivery Reviews | 2013

Nanomedicine therapeutic approaches to overcome cancer drug resistance

Janet L. Markman; Arthur Rekechenetskiy; Eggehard Holler; Julia Y. Ljubimova

Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created making drug selection for personal patient treatment much more intensive and effective. This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance. With the advanced design and alternative mechanisms of drug delivery known for different nanodrugs including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles, overcoming various forms of multi-drug resistance looks promising and opens new horizons for cancer treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inhibition of brain tumor growth by intravenous poly(β-l-malic acid) nanobioconjugate with pH-dependent drug release

Hui Ding; Satoshi Inoue; Alexander V. Ljubimov; Rameshwar Patil; Jose Portilla-Arias; Jinwei Hu; Bindu Konda; Kolja Wawrowsky; Manabu Fujita; Natalya Karabalin; Takako Sasaki; Keith L. Black; Eggehard Holler; Julia Y. Ljubimova

Effective treatment of brain neurological disorders such as Alzheimers disease, multiple sclerosis, or tumors should be possible with drug delivery through blood–brain barrier (BBB) or blood–brain tumor barrier (BTB) and targeting specific types of brain cells with drug release into the cell cytoplasm. A polymeric nanobioconjugate drug based on biodegradable, nontoxic, and nonimmunogenic polymalic acid as a universal delivery nanoplatform was used for design and synthesis of nanomedicine drug for i.v. treatment of brain tumors. The polymeric drug passes through the BTB and tumor cell membrane using tandem monoclonal antibodies targeting the BTB and tumor cells. The next step for polymeric drug action was inhibition of tumor angiogenesis by specifically blocking the synthesis of a tumor neovascular trimer protein, laminin-411, by attached antisense oligonucleotides (AONs). The AONs were released into the target cell cytoplasm via pH-activated trileucine, an endosomal escape moiety. Drug delivery to the brain tumor and the release mechanism were both studied for this nanobiopolymer. Introduction of a trileucine endosome escape unit resulted in significantly increased AON delivery to tumor cells, inhibition of laminin-411 synthesis in vitro and in vivo, specific accumulation in brain tumors, and suppression of intracranial glioma growth compared with pH-independent leucine ester. The availability of a systemically active polymeric drug delivery system that passes through the BTB, targets tumor cells, and inhibits glioma growth gives hope for a successful strategy of glioma treatment. This delivery system with drug release into the brain-specific cell type could be useful for treatment of various brain pathologies.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

HER2-positive breast cancer targeting and treatment by a peptide-conjugated mini nanodrug.

Hui Ding; Pallavi R. Gangalum; Anna Galstyan; Irving Fox; Rameshwar Patil; Paul A. Hubbard; Julia Y. Ljubimova; Eggehard Holler

HER2+ breast cancer is one of the most aggressive forms of breast cancer. The new polymalic acid-based mini nanodrug copolymers are synthesized and specifically characterized to inhibit growth of HER2+ breast cancer. These mini nanodrugs are highly effective and in the clinic may substitute for trastuzumab (the marketed therapeutic antibody) and antibody-targeted nanobioconjugates. Novel mini nanodrugs are designed to have slender shape and small size. HER2+ cells were recognized by the polymer-attached trastuzumab-mimetic 12-mer peptide. Synthesis of the nascent cell-transmembrane HER2/neu receptors by HER2+ cells was inhibited by antisense oligonucleotides that prevented cancer cell proliferation and significantly reduced tumor size by more than 15 times vs. untreated control or PBS-treated group. We emphasize that the shape and size of mini nanodrugs can enhance penetration of multiple bio-barriers to facilitate highly effective treatment. Replacement of trastuzumab by the mimetic peptide favors reduced production costs and technical efforts, and a negligible immune response.


NeuroImage | 2011

Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?

Babak Kateb; Katherine Chiu; Keith L. Black; Vicky Yamamoto; Bhavraj Khalsa; Julia Y. Ljubimova; Hui Ding; Rameshwar Patil; Jose Portilla-Arias; Mike Modo; David F. Moore; Keyvan Farahani; Michael S. Okun; Neal Prakash; Josh Neman; Daniel Ahdoot; Warren Grundfest; Shouleh Nikzad; John D. Heiss

Nanotechnology is the design and assembly of submicroscopic devices called nanoparticles, which are 1-100 nm in diameter. Nanomedicine is the application of nanotechnology for the diagnosis and treatment of human disease. Disease-specific receptors on the surface of cells provide useful targets for nanoparticles. Because nanoparticles can be engineered from components that (1) recognize disease at the cellular level, (2) are visible on imaging studies, and (3) deliver therapeutic compounds, nanotechnology is well suited for the diagnosis and treatment of a variety of diseases. Nanotechnology will enable earlier detection and treatment of diseases that are best treated in their initial stages, such as cancer. Advances in nanotechnology will also spur the discovery of new methods for delivery of therapeutic compounds, including genes and proteins, to diseased tissue. A myriad of nanostructured drugs with effective site-targeting can be developed by combining a diverse selection of targeting, diagnostic, and therapeutic components. Incorporating immune target specificity with nanostructures introduces a new type of treatment modality, nano-immunochemotherapy, for patients with cancer. In this review, we will discuss the development and potential applications of nanoscale platforms in medical diagnosis and treatment. To impact the care of patients with neurological diseases, advances in nanotechnology will require accelerated translation to the fields of brain mapping, CNS imaging, and nanoneurosurgery. Advances in nanoplatform, nano-imaging, and nano-drug delivery will drive the future development of nanomedicine, personalized medicine, and targeted therapy. We believe that the formation of a science, technology, medicine law-healthcare policy (STML) hub/center, which encourages collaboration among universities, medical centers, US government, industry, patient advocacy groups, charitable foundations, and philanthropists, could significantly facilitate such advancements and contribute to the translation of nanotechnology across medical disciplines.


Journal of Histochemistry and Cytochemistry | 1997

Expression of HGF, Its Receptor c-met, c-myc, and Albumin in Cirrhotic and Neoplastic Human Liver Tissue

Julia Y. Ljubimova; Lidija M. Petrovic; Steven E. Wilson; Stephen A. Geller; Achilles A. Demetriou

Hepatocellular carcinoma (HCC) is a common type of cancer, with approximately 260,000 new cases each year, and liver cirrhosis is generally considered a major predisposing factor for HCC. However, specific changes of gene expression in liver cirrhosis and HCC remain obscure. The expression of genes for hepatocyte growth factor (HGF), its receptor c-met proto-oncogene, c-myc proto-oncogene, and albumin was analyzed. Gene expression was studied by PCR in seven normal human livers, nine cases of hepatitis C cirrhosis, 12 cases of alcoholic cirrhosis, two cases of liver adenoma, and 12 cases of HCC. HGF and c-met protein were revealed by immunofluorescent staining. HGF mRNA was not expressed in normal livers but was detected in adenomas, in 80% of HCC, and in some cirrhoses. Paraffin-embedded and fresh-frozen tissue samples yielded similar results. Immunohistochemical data correlated with PCR results regarding the overexpression of the HGF/c-met system in HCC. Albumin gene expression was decreased in HCC vs normal livers, consistent with altered function of tumor hepatocytes. The elevated expression of the HGF/c-met system in HCC may play a role in tumor development and/or progression. Tissue localization studies of HGF and its receptor c-met protein support the existence of both autocrine and paracrine mechanisms of action of HGF in HCC vs only a paracrine mechanism in normal liver.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Ambiguities in applying traditional Limulus Amebocyte Lysate tests to quantify endotoxin in nanoparticle formulations

Marina A. Dobrovolskaia; Barry W. Neun; Jeffrey D. Clogston; Hui Ding; Julia Y. Ljubimova; Scott E. McNeil

Nanotechnology is finding increasing application in biology and medicine. As with other pharmaceutical formulations and medical devices intended for use in animals and human patients, contamination of nanoparticles with bacterial endotoxins should be thoroughly investigated before preclinical in vitro and in vivo characterization. Traditional methods to study endotoxin contamination include the in vitro quantitative Limulus Amebocyte Lysate test and the in vivo qualitative rabbit pyrogen test. Both of these tests have a long history of use for traditional pharmaceuticals and medical devices and are routinely used in drug development. Here we report that nanoparticles often interfere with these traditional endotoxin detection tests and suggest approaches to detect and overcome such interferences.


Nanomedicine: Nanotechnology, Biology and Medicine | 2008

Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery

Julia Y. Ljubimova; Manabu Fujita; Alexander V. Ljubimov; Vladimir P. Torchilin; Keith L. Black; Eggehard Holler

Nanoconjugates are emerging as promising drug-delivery vehicles because of their multimodular structure enabling them to actively target discrete cells, pass through biological barriers and simultaneously carry multiple drugs of various chemical nature. Nanoconjugates have matured from simple devices to multifunctional, biodegradable, nontoxic and nonimmunogenic constructs, capable of delivering synergistically functioning drugs in vivo. This review mainly concerns the Polycefin family of natural-derived polymeric drug-delivery devices as an example. This type of vehicle is built by hierarchic conjugation of functional groups onto the backbone of poly(malic acid), an aliphatic polyester obtained from the microorganism Physarum polycephalum. Particular Polycefin variants target human brain and breast tumors implanted into animals specifically and actively and could be detected easily by noninvasive imaging analysis. Delivery of antisense oligonucleotides to a tumor-specific angiogenic marker using Polycefin resulted in significant inhibition of tumor angiogenesis and increase of animal survival.


Cancer | 2004

Association between laminin-8 and glial tumor grade, recurrence, and patient survival

Julia Y. Ljubimova; Manabu Fugita M.D.; M B S Natalya Khazenzon; Asha Das; Brian B. Pikul; B S Daniel Newman; Kiyotoshi Sekiguchi; Lydia M. Sorokin; Takako Sasaki; Keith L. Black

The authors previously sought to identify novel markers of glioma invasion and recurrence. Their research demonstrated that brain gliomas overexpressed a subset of vascular basement components, laminins, that contained the α4 chain. One of these laminins, laminin‐8, was found to be present in highly invasive and malignant glioblastoma multiforme (GBM) (Grade 4 astrocytoma); its expression was associated with a decreased time to tumor recurrence, and it was found in vitro to promote invasion of GBM cell lines.


Breast Cancer Research | 2005

Overexpression of β1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases

Manabu Fujita; Natalya M. Khazenzon; Shikha Bose; Kiyotoshi Sekiguchi; Takako Sasaki; William G. Carter; Alexander V. Ljubimov; Keith L. Black; Julia Y. Ljubimova

IntroductionLaminins are the major components of vascular and parenchymal basement membranes. We previously documented a switch in the expression of vascular laminins containing the α4 chain from predominantly laminin-9 (α4β2γ1) to predominantly laminin-8 (α4β1γ1) during progression of human brain gliomas to high-grade glioblastoma multiforme. Here, differential expression of laminins was studied in blood vessels and ductal epithelium of the breast.MethodIn the present study the expressions of laminin isoforms α1–α5, β1–β3, γ1, and γ2 were examined during progression of breast cancer. Forty-five clinical samples of breast tissues including normal breast, ductal carcinomas in situ, invasive ductal carcinomas, and their metastases to the brain were compared using Western blot analysis and immunohistochemistry for various chains of laminin, in particular laminin-8 and laminin-9.ResultsLaminin α4 chain was observed in vascular basement membranes of most studied tissues, with the highest expression in metastases. At the same time, the expression of laminin β2 chain (a constituent of laminin-9) was mostly seen in normal breast and carcinomas in situ but not in invasive carcinomas or metastases. In contrast, laminin β1 chain (a constituent of laminin-8) was typically found in vessel walls of carcinomas and their metastases but not in those of normal breast. The expression of laminin-8 increased in a progression-dependent manner. A similar change was observed from laminin-11 (α5β2γ1) to laminin-10 (α5β1γ1) during breast tumor progression. Additionally, laminin-2 (α2β1γ1) appeared in vascular basement membranes of invasive carcinomas and metastases. Chains of laminin-5 (α3β3γ2) were expressed in the ductal epithelium basement membranes of the breast and diminished with tumor progression.ConclusionThese results suggest that laminin-2, laminin-8, and laminin-10 are important components of tumor microvessels and may associate with breast tumor progression. Angiogenic switch from laminin-9 and laminin-11 to laminin-8 and laminin-10 first occurs in carcinomas in situ and becomes more pronounced with progression of carcinomas to the invasive stage. Similar to high-grade brain gliomas, the expression of laminin-8 (and laminin-10) in breast cancer tissue may be a predictive factor for tumor neovascularization and invasion.

Collaboration


Dive into the Julia Y. Ljubimova's collaboration.

Top Co-Authors

Avatar

Keith L. Black

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eggehard Holler

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hui Ding

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rameshwar Patil

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bindu Konda

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Satoshi Inoue

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manabu Fujita

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge