Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei B. Borisov is active.

Publication


Featured researches published by Andrei B. Borisov.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2000

Cell death in denervated skeletal muscle is distinct from classical apoptosis

Andrei B. Borisov; Bruce M. Carlson

Denervation of skeletal muscle is followed by the progressive loss of tissue mass and impairment of its functional properties. The purpose of the present study was to investigate the occurrence of cell death and its mechanism in rat skeletal muscle undergoing post‐denervation atrophy. We studied the expression of specific markers of apoptosis and necrosis in experimentally denervated tibialis anterior, extensor digitorum longus and soleus muscles of adult rats. Fluorescent staining of nuclear DNA with propidium iodide revealed the presence of nuclei with hypercondensed chromatin and fragmented nuclei typical of apoptotic cells in the muscle tissue 2, 4 and to a lesser extent 7 months after denervation. This finding was supported by electron microscopy of the denervated muscle. We found clear morphological manifestations of muscle cell death, with ultrastructural characteristics very similar if not identical to those considered as nuclear and cytoplasmic markers of apoptosis. With increasing time of denervation, progressive destabilization of the differentiated phenotype of muscle cells was observed. It included disalignment and spatial disorganization of myofibrils as well as their resorption and formation of myofibril‐free zones. These changes initially appeared in subsarcolemmal areas around myonuclei, and by 4 months following nerve transection they were spread throughout the sarcoplasm. Despite an increased number of residual bodies and secondary lysosomes in denervated muscle, we did not find any evidence of involvement of autophagocytosis in the resorption of the contractile system. Dead muscle fibers were usually surrounded by a folded intact basal lamina; they had an intact sarcolemma and highly condensed chromatin and sarcoplasm. Folds of the basal lamina around the dead cells resulted from significant shrinkage of cell volume. Macrophages were occasionally found in close proximity to dead myocytes. We detected no manifestations of inflammation in the denervated tissue. Single myocytes expressing traits of the necrotic phenotype were very rare. A search for another marker of apoptosis, nuclear DNA fragmentation, using terminal deoxyribonucleotidyl transferase mediated dUTP nick end labeling (the TUNEL method) in situ, revealed the presence of multiple DNA fragments in cell nuclei in only a very small number of cell nuclei in 2 and 4 month denervated muscle and to less extent in 7 month denervated muscle. Virtually no TUNEL reactivity was found in normal muscle. Double labeling of tissue denervated for 2 and 4 months for genome fragmentation with the TUNEL method and for total nuclear DNA with propidium iodide demonstrated co‐localization of the TUNEL‐positive fragmented DNA in some of the nuclei containing condensed chromatin and in fragmented nuclei. However, the numbers of nuclei of abnormal morphology containing condensed and/or irregular patterns of chromatin distribution, as revealed by DNA staining and electron microscopy, exceeded by 33–38 times the numbers of nuclei positive for the TUNEL reaction. Thus, we found a discrepancy between the frequences of expression of morphological markers of apoptosis and DNA fragmentation in denervated muscle. This provides evidence that fragmentation of the genomic DNA is not an obligatory event during atrophy and death of muscle cells, or, alternatively, it may occur only for a short period of time during this process. Unlike classical apoptosis described in mammalian thymocytes and lymphoid cells, non‐inflammatory death of muscle fibers in denervated muscle occurs a long time after the removal of myotrophic influence of the nerve and is preceded by the progressive imbalance of the state of terminal differentiation. Our results indicate that apoptosis appears to be represented by a number of distinct isotypes in animals belonging to different taxonomic groups and in different cell lineages of the same organism. Anat Rec 258:305–318, 2000.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2001

Interrelations of myogenic response, progressive atrophy of muscle fibers, and cell death in denervated skeletal muscle

Andrei B. Borisov; Eduard I. Dedkov; Bruce M. Carlson

Little is known concerning the time‐course and structural dynamics of reactivation of compensatory myogenesis in denervated muscle, its initiating cellular mechanisms, and the relationship between this process and the progression of postdenervation atrophy. The purpose of this study was to investigate the interrelations between temporal and spatial patterns of the myogenic response in denervated muscle and progressive atrophy of muscle fibers. Another objective was to study whether reactivation of myogenesis correlates with destabilization of the differentiated state and death of denervated muscle cells. It has remained unclear whether muscle fiber atrophy was the primary factor activating the myogenic response, what levels of cellular atrophy were associated with its activation, and whether the initiation and intensity of myogenesis depended on the local and individual heterogeneity of atrophic changes among fibers. For this reason, our objective was also to identify the levels of atrophic and degenerative changes in denervated muscle fibers that are correlated with activation of the myogenic response. We found that the reactivation of myogenesis in the tibialis anterior and extensor digitorum longus muscles of the rat starts between days 10–21 following nerve transection, before atrophy has attained advanced level, long before dead cells are found in the tissue. Formation of new muscle fibers reaches its maximum between 2 and 4 months following denervation and gradually decreases with progressive postdenervation atrophy. The myogenic response is biphasic and includes two distinct processes. The first process resembles the formation of secondary and tertiary generations of myotubes during normal muscle development and dominates during the first 2 months of denervation. During this period, activated satellite cells form new myotubes on live differentiated muscle fibers. Most of the daughter myotubes in 1‐ and 2‐month denervated muscle develop on the surface of fast type parent muscle fibers, and some of the newly formed muscle fibers express slow myosin. Some fast type parent fibers are weakly or, more rarely, moderately immunopositive for embryonic isomyosin. This indicates that reactivation of myogenesis may also depend on the fiber type. The level of atrophy, destabilization of the differentiated myofiber phenotype, and degenerative changes of individual fibers in denervated muscle are very heterogeneous. The myogenic response of the first type is associated predominantly with fibers of average and higher than average levels of atrophy. Muscle cells that undergo a lesser degree of atrophy also form daughter fibers, although with a lower incidence. We did not find any correlation between the size of newly formed fibers and the level of atrophy of parent fibers. The topographical distribution of new myotubes both in the peripheral and central areas of the mid‐belly equatorial sections at the early stages following nerve transection indicates that myogenesis of the first type represents a systemic reaction of muscle to the loss of neural control. These data indicate that activation of the myogenic response does not depend on cell death and degenerative processes per se. The second type of myogenesis is a typical regenerative reaction that occurs mainly within the spaces surrounded by the basal laminae of dead muscle fibers. Myocytes of different sizes are susceptible to degeneration and death, which indicates that cell death in denervated muscle does not correlate with levels of muscle cell atrophy. The regenerative process frequently results in development of abnormal muscle cells that branch or form small clusters. Replacement of lost fibers becomes activated between 2 and 4 months following nerve transection, i.e., mainly at advanced stages of postdenervation atrophy, when cell death becomes a contributing factor of the atrophic process. In long‐term denervated muscle, the first and second types of myogenesisoccur concurrently, and the topographical distribution of the myogenic response becomes more heterogeneous than during the first weeks following denervation. Thus, our data demonstrate differential temporal and spatial expression of two patterns of myogenesis in denervated muscle that appear to be controlled by different regulatory mechanisms during the postdenervation period. Anat Rec 264:203–218, 2001.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2000

Remodeling of the vascular bed and progressive loss of capillaries in denervated skeletal muscle

Andrei B. Borisov; Shi-Kai Huang; Bruce M. Carlson

Very little is known regarding structural and functional responses of the vascular bed of skeletal muscle to denervation and about the role of microcirculatory changes in the pathogenesis of post‐denervation muscle atrophy. The purpose of the present study was to investigate the changes of the anatomical pattern of vascularization of the extensor digitorum longus muscle in WI/HicksCar rats 1, 2, 4, 7, 12, and 18 months following denervation of the limb. We found that the number of capillaries related to the number of muscle fibers, i.e. the capillary‐to‐fiber ratio (CFR), decreased by 88%, from 1.55 ± 0.35 to 0.19 ± 0.04, during the first 7 months after denervation and then slightly declined at a much lower rate during the next 11 months of observation to 10% of the CFR in normal muscle. Between months 2 and 4 after denervation, the CRF decreased by 2.4 times, from 58% to 24% of the control value. The loss of capillaries during the first 4 months following nerve transection was nearly linear and progressed with an average decrement of 4.16% per week. Electron microscopy demonstrated progressive degeneration of capillaries following nerve transection. In muscle cells close to degenerating capillaries, the loss of subsarcolemmal and intermyofibrillar mitochondria, local disassembly of myofibrils and other manifestations of progressive atrophy were frequently observed. The levels of devascularization and the degree of degenerative changes varied greatly within different topographical areas, resulting in significant heterogeneity of intercapillary distances and local capillary densities within each sample of denervated muscle. Perivascular and interstitial fibrosis that rapidly developed after denervation resulted in the spatial separation of blood vessels from muscle cells and their embedment in a dense lattice of collagen. As a result of this process, diffusion distances between capillaries and the surfaces of muscle fibers increased 10–400 times. Eighteen months after denervation most of the capillaries were heavily cushioned with collagen, and on the average 40% of the muscle cells were completely avascular. Devascularization of the tissue was accompanied by degeneration and death of muscle cells that had become embedded in a dense lattice of collagen. Immunofluorescent staining for the vascular isoform of α‐actin revealed preservation of major blood vessels and a greater variability in thickness of their medial layer. Hyperplastic growth of the medial layer in some blood vessels resulted in narrowing of their lumens. By the end of month 7 after denervation, large deposits of collagen around arterioles often exceeded their diameters. Identification of oxidative muscle fibers after immunostaining for slow‐twitch myosin, as well as using ultrastructural criteria, has shown that after 2 months of denervation oxidative muscle fibers were less susceptible to atrophy than glycolytic fibers. The lower rate of atrophy of type I muscle fibers at early stages of denervation may be explained by their initially better vascularization in normal muscle and their higher capacity to retain capillaries shortly after denervation. Thus, degeneration and loss of capillaries after denervation occurs more rapidly than the loss of muscle fibers, which results in progressive decrease of the CFR in denervated muscle. The change of capillary number in denervated muscle is biphasic: the phase of a rapid decrease of the CFR during the first 7 months after nerve transection is followed by the phase of stabilization. The presence of areas completely devoid of capillaries in denervated muscle and the virtual absence of such areas in normal muscle indicate the development of foci of regional hypoxia during long‐term denervation. The anatomical pattern of muscle microvascularization changes dramatically after nerve transection. Each muscle fiber in normal muscle directly contacts on average 3–5 capillaries. In contrast, in denervated muscle, groups of muscle fibers are served by single capillaries spatially separated from them by dense collagen insulation. Taken together, these results suggest that the remodeling of the vascular bed in the direction of a less oxygen‐dependent metabolism and impairment of microcirculation are integral components in the pathogenesis of post‐denervation muscle atrophy. Insufficient vascularization and a vast accumulation of collagen in denervated muscle appear to be among the factors that block regeneration of long‐term denervated muscle after experimental or clinical reinnervation. Anat Rec 258:292–304, 2000.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2001

Reparative myogenesis in long-term denervated skeletal muscles of adult rats results in a reduction of the satellite cell population

Eduard I. Dedkov; Tatiana Y. Kostrominova; Andrei B. Borisov; Bruce M. Carlson

This study, conducted on 25‐month denervated rat hindlimb muscles, was directed toward elucidating the basis for the poor regeneration that is observed in long‐term denervated muscles. Despite a ∼97.6% loss in mean cross‐sectional area of muscle fibers, the muscles retained their fascicular arrangement, with the fascicles containing ∼1.5 times more fibers than age‐matched control muscles. At least three distinct types of muscle fibers were observed: degenerating, persisting (original), and newly formed (regenerated) fibers. A majority of newly formed fibers did not appear to undergo complete maturation, and morphologically they resembled myotubes. Sites of former motor end‐plates remained identifiable in persisting muscle fibers. Nuclear death was seen in all types of muscle fibers, especially in degenerating fibers. Nevertheless, the severely atrophic skeletal muscles continued to express developmentally and functionally important proteins, such as MyoD, myogenin, adult and embryonic subunits of the nicotinic acetylcholine receptor, and neural‐cell adhesion molecule. Despite the prolonged period of denervation, slow and fast types of myosin were found in surviving muscle fibers. The number of satellite cells was significantly reduced in long‐term denervated muscles, as compared with age‐matched control muscles. In 25‐month denervated muscle, satellite cells were only attached to persisting muscle fibers, but were never seen on newly formed fibers. Our data suggest that the absence of satellite cells in a population of immature newly formed muscle fibers that has arisen as a result of continuous reparative myogenesis may be a crucial, although not necessarily the only, factor underlying the poor regenerative ability of long‐term denervated muscle. Anat Rec 263:139–154, 2001.


Acta Neuropathologica | 2002

Survival of Schwann cells in chronically denervated skeletal muscles.

Eduard I. Dedkov; Tatiana Y. Kostrominova; Andrei B. Borisov; Bruce M. Carlson

Abstract. It is well established that over time Schwann cells disappear from the endoneurial space of the distal stump of a chronically transected sciatic nerve trunk. Nevertheless, the status of the Schwann cells within terminal branches of the transected sciatic nerve remains poorly understood. To elucidate this issue we examined the endoneurial space of the intramuscular nerves in rat hindlimb skeletal muscles, which had been denervated for a 25-month period. Based on specific ultrastructural characteristics, we identified a small population of viable Schwann cells within the intramuscular nerve trunks. The surviving Schwann cells continued to be immunopositive for both S-100 protein and neural cell adhesion molecule. In addition, reverse transcription-polymerase chain reaction and/or Western blot analyses have shown that at least two molecules, brain-derived neurotrophic factor and a non-catalytic truncated form of tyrosine protein kinase receptor B, which could potentially participate in the process of nerve repair, were detectable in chronically denervated skeletal muscle. Our results demonstrate that Schwann cells can survive inside the intramuscular nerve trunks of denervated skeletal muscle for a 25-month period without axonal contact.


Journal of Histochemistry and Cytochemistry | 2003

Aging of Skeletal Muscle Does Not Affect the Response of Satellite Cells to Denervation

Eduard I. Dedkov; Andrei B. Borisov; Anton Wernig; Bruce M. Carlson

Satellite cells (SCs) are the main source of new fibers in regenerating skeletal muscles and the key contributor to extra nuclei in growing fibers during postnatal development. Aging results in depletion of the SC population and in the reduction of its proliferative activity. Although it has been previously determined that under conditions of massive fiber death in vivo the regenerative potential of SCs is not impaired in old muscle, no studies have yet tested whether advanced age is a factor that may restrain the response of SCs to muscle denervation. The present study is designed to answer this question, comparing the changes of SC numbers in tibialis anterior (TA) muscles from young (4 months) and old (24 months) WI/HicksCar rats after 2 months of denervation. Immunostaining with antibodies against M-cadherin and NCAM was used to detect and count the SCs. The results demonstrate that the percentages of both M-cadherin- and NCAM-positive SCs (SC/Fibers × 100) in control TA muscles from young rats (5.6 ± 0.5% and 1.4 ± 0.2%, respectively) are larger than those in old rats (2.3 ± 0.3% and 0.5 ± 0.1%, respectively). At the same time, in 2-month denervated TA muscles the percentages of M-cadherin and NCAM positive SC are increased and reach a level that is comparable between young (16.2 ± 0.9% and 7.5 ± 0.5%, respectively) and old (15.9 ± 0.7% and 10.1 ± 0.5%, respectively) rats. Based on these data, we suggest that aging does not repress the capacity of SC to become activated and grow in the response to muscle denervation.


Developmental Dynamics | 2006

Obscurin Is Required for the Lateral Alignment of Striated Myofibrils in Zebrafish

Maide Ö. Raeker; Fengyun Su; Sarah B. Geisler; Andrei B. Borisov; Aikaterini Kontrogianni-Konstantopoulos; Susan E. Lyons; Mark W. Russell

Obscurin/obscurin‐MLCK is a giant sarcomere‐associated protein with multiple isoforms whose interactions with titin and small ankyrin‐1 suggest that it has an important role in myofibril assembly, structural support, and the sarcomeric alignment of the sarcoplasmic reticulum. In this study, we characterized the zebrafish orthologue of obscurin and examined its role in striated myofibril assembly. Zebrafish obscurin was expressed in the somites and central nervous system by 24 hours post‐fertilization (hpf) and in the heart by 48 hpf. Depletion of obscurin using two independent morpholino antisense oligonucleotides resulted in diminished numbers and marked disarray of skeletal myofibrils, impaired lateral alignment of adjacent myofibrils, disorganization of the sarcoplasmic reticulum, somite segmentation defects, and abnormalities of cardiac structure and function. This is the first demonstration that obscurin is required for vertebrate cardiac and skeletal muscle development. The diminished capacity to generate and organize new myofibrils in response to obscurin depletion suggests that it may have a vital role in the causation of or adaptation to cardiac and skeletal myopathies. Developmental Dynamics 235:2018–2029, 2006.


Journal of Histochemistry and Cytochemistry | 2004

Dynamics of Obscurin Localization During Differentiation and Remodeling of Cardiac Myocytes: Obscurin as an Integrator of Myofibrillar Structure

Andrei B. Borisov; Aikaterini Kontrogianni-Konstantopoulos; Robert J. Bloch; Margaret V. Westfall; Mark W. Russell

Obscurin is a newly identified giant muscle protein whose functions remain to be elucidated. In this study we used high-resolution confocal microscopy to examine the dynamics of obscurin localization in cultures of rat cardiac myocytes during the assembly and disassembly of myofibrils. Double immunolabeling of neonatal and adult rat cells for obscurin and sarcomeric α-actinin, the major protein of Z-lines, demonstrated that, during myofibrillogenesis, obscurin is intensely incorporated into M-band areas of A-bands and, to a lesser extent, in Z-lines of newly formed sarcomeres. Presarcomeric structural precursors of myofibrils were intensely immunopositive for α-actinin and, unlike mature myofibrils, weakly immunopositive or immunonegative for obscurin. This indicates that most of the obscurin assembles in developing myofibrils after abundant incorporation of α-actinin and that massive integration of obscurin occurs at more advanced stages of sarcomere assembly. Immunoreactivity for obscurin in the middle of A-bands and in Z-lines of sarcomeres bridged the gaps between individual bundles of newly formed myofibrils, suggesting that this protein appears to be directly involved in their primary lateral connection and registered alignment into larger clusters. Close sarcomeric localization of obscurin and titin suggests that they may interact during myofibril assembly. Interestingly, the laterally aligned striated pattern of obscurin formed at a stage when desmin, traditionally considered as a molecular linker responsible for the lateral binding and stabilization of myofibrils at the Z-bands, was still diffusely localized. During the disassembly of the contractile system in adult myocytes, disappearance of the cross-striated pattern of obscurin preceded the disorganization of registered alignment and intense breakdown of myofibrils. The cross-striated pattern of desmin typical of terminally differentiated myocytes disappeared before or simultaneously with obscurin. During redifferentiation, as in neonatal myocytes, sarcomeric incorporation of obscurin closely followed that of α-actinin and occurred earlier than the striated arrangement of desmin intermediate filaments. The presence of obscurin in the Z-lines and its later assembly into the A/M-bands indicate that it may serve to stabilize and align sarcomeric structure when myosin filaments are incorporated. Our data suggest that obscurin, interacting with other muscle proteins and possibly with the sarcoplasmic reticulum, may have a role as a flexible structural integrator of myofibrils during assembly and adaptive remodeling of the contractile apparatus.


Development Genes and Evolution | 2004

Orthologous relationship of obscurin and Unc-89: phylogeny of a novel family of tandem myosin light chain kinases.

Sarah B. Sutter; Maide Ö. Raeker; Andrei B. Borisov; Mark W. Russell

Myosin light chain kinases (MLCK) are a family of signaling proteins that are required for cytoskeletal remodeling in myocytes. Recently, two novel MLCK proteins, SPEG and obscurin-MLCK, were identified with the unique feature of two tandemly-arranged MLCK domains. In this study, the evolutionary origins of this MLCK subfamily were traced to a probable orthologue of obscurin-MLCK in Drosophila melanogaster, Drosophila Unc-89, and the MLCK kinase domains of zebrafish SPEG, zebrafish obscurin-MLCK, and human SPEG were characterized. Phylogenetic analysis of the MLCK domains indicates that the carboxy terminal kinase domains of obscurin-MLCK, SPEG and Unc-89 are more closely related to each other than to the amino terminal kinase domains or to other MLCKs, supporting the assertion that obscurin-MLCK is the vertebrate orthologue of Caenorhabditis elegans Unc-89, a giant multidomain protein that is required for normal myofibril assembly. The apparent lack of an invertebrate orthologue of SPEG and the conserved exon structure of the kinase domains between SPEG and obscurin-MLCK suggests that SPEG arose from obscurin-MLCK by a gene duplication event. The length of the primary amino acid sequence between the immunoglobulin (Ig) domains associated with the MLCK motifs is conserved in obscurin-MLCK, SPEG and C. elegans Unc-89, suggesting that these putative protein interaction domains may target the kinases to highly conserved intracellular sites. The conserved arrangement of the tandem MLCK domains and their relatively restricted expression in striated muscle indicates that further characterization of this novel MLCK subfamily may yield important insights into cardiac and skeletal muscle physiology.


Wound Repair and Regeneration | 1999

Regeneration of skeletal and cardiac muscle in mammals: do nonprimate models resemble human pathology?

Andrei B. Borisov

Most of the available information regarding the regenerative potential and compensatory remodeling of mammalian tissues has been obtained from nonprimate animals, mainly rodent experimental models. The increasing use of transgenic mice for studies of the mechanisms controlling organogenesis and regeneration also requires a clear understanding of their applicability as experimental models for studies of similar processes in humans and other mammals. Application of modern cell biology methods to studies of regenerative processes has provided new insights into similarity and differences in cellular responses to injury in the tissues of different mammalian species. During more than 200‐million years of progressive divergent evolution of mammals, cellular mechanisms of tissue regeneration and compensatory remodeling evolved together with increasingly adaptive functional specialization and structural complexity of mammalian tissues and organs. Rodents represent a phylogenetically ancient order of mammals that has conservatively retained a number of morphofunctional characteristics of early representatives of this class, which include enhanced regenerative capacity of tissues. A comparative analysis of regenerative processes in skeletal and cardiac muscle, as well as in several other mammalian tissues, shows that time courses and intensities of regeneration in response to the same type of injury vary even within taxonomically related species (e.g., rat, mouse, and hamster). The warm bloodedness of mammals facilitated the development of more complex mechanisms of metabolic, immune, and neurohumoral regulation, which resulted in a stronger dependence of regenerative processes on vascularization and innervation. For this reason, interspecies modifications of regenerative responses are limited by the capacity of the animal to resorb rapidly the foci of necrosis and to revascularize and reinnervate the volume of the regenerating tissue. These differences, among other factors, result in significantly lower rates of reparative regeneration in mammals possessing larger body sizes than rodents. A review of these data strongly indicates that the phylogenetic age and biological differences between different species should be taken into account before extrapolation of regenerative properties of nonprimate tissues on the regenerative responses in the primates. (WOUND REP REG 1999;7:26–35)

Collaboration


Dive into the Andrei B. Borisov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduard I. Dedkov

New York Institute of Technology College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge