Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduard I. Dedkov is active.

Publication


Featured researches published by Eduard I. Dedkov.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2001

Interrelations of myogenic response, progressive atrophy of muscle fibers, and cell death in denervated skeletal muscle

Andrei B. Borisov; Eduard I. Dedkov; Bruce M. Carlson

Little is known concerning the time‐course and structural dynamics of reactivation of compensatory myogenesis in denervated muscle, its initiating cellular mechanisms, and the relationship between this process and the progression of postdenervation atrophy. The purpose of this study was to investigate the interrelations between temporal and spatial patterns of the myogenic response in denervated muscle and progressive atrophy of muscle fibers. Another objective was to study whether reactivation of myogenesis correlates with destabilization of the differentiated state and death of denervated muscle cells. It has remained unclear whether muscle fiber atrophy was the primary factor activating the myogenic response, what levels of cellular atrophy were associated with its activation, and whether the initiation and intensity of myogenesis depended on the local and individual heterogeneity of atrophic changes among fibers. For this reason, our objective was also to identify the levels of atrophic and degenerative changes in denervated muscle fibers that are correlated with activation of the myogenic response. We found that the reactivation of myogenesis in the tibialis anterior and extensor digitorum longus muscles of the rat starts between days 10–21 following nerve transection, before atrophy has attained advanced level, long before dead cells are found in the tissue. Formation of new muscle fibers reaches its maximum between 2 and 4 months following denervation and gradually decreases with progressive postdenervation atrophy. The myogenic response is biphasic and includes two distinct processes. The first process resembles the formation of secondary and tertiary generations of myotubes during normal muscle development and dominates during the first 2 months of denervation. During this period, activated satellite cells form new myotubes on live differentiated muscle fibers. Most of the daughter myotubes in 1‐ and 2‐month denervated muscle develop on the surface of fast type parent muscle fibers, and some of the newly formed muscle fibers express slow myosin. Some fast type parent fibers are weakly or, more rarely, moderately immunopositive for embryonic isomyosin. This indicates that reactivation of myogenesis may also depend on the fiber type. The level of atrophy, destabilization of the differentiated myofiber phenotype, and degenerative changes of individual fibers in denervated muscle are very heterogeneous. The myogenic response of the first type is associated predominantly with fibers of average and higher than average levels of atrophy. Muscle cells that undergo a lesser degree of atrophy also form daughter fibers, although with a lower incidence. We did not find any correlation between the size of newly formed fibers and the level of atrophy of parent fibers. The topographical distribution of new myotubes both in the peripheral and central areas of the mid‐belly equatorial sections at the early stages following nerve transection indicates that myogenesis of the first type represents a systemic reaction of muscle to the loss of neural control. These data indicate that activation of the myogenic response does not depend on cell death and degenerative processes per se. The second type of myogenesis is a typical regenerative reaction that occurs mainly within the spaces surrounded by the basal laminae of dead muscle fibers. Myocytes of different sizes are susceptible to degeneration and death, which indicates that cell death in denervated muscle does not correlate with levels of muscle cell atrophy. The regenerative process frequently results in development of abnormal muscle cells that branch or form small clusters. Replacement of lost fibers becomes activated between 2 and 4 months following nerve transection, i.e., mainly at advanced stages of postdenervation atrophy, when cell death becomes a contributing factor of the atrophic process. In long‐term denervated muscle, the first and second types of myogenesisoccur concurrently, and the topographical distribution of the myogenic response becomes more heterogeneous than during the first weeks following denervation. Thus, our data demonstrate differential temporal and spatial expression of two patterns of myogenesis in denervated muscle that appear to be controlled by different regulatory mechanisms during the postdenervation period. Anat Rec 264:203–218, 2001.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2001

Reparative myogenesis in long-term denervated skeletal muscles of adult rats results in a reduction of the satellite cell population

Eduard I. Dedkov; Tatiana Y. Kostrominova; Andrei B. Borisov; Bruce M. Carlson

This study, conducted on 25‐month denervated rat hindlimb muscles, was directed toward elucidating the basis for the poor regeneration that is observed in long‐term denervated muscles. Despite a ∼97.6% loss in mean cross‐sectional area of muscle fibers, the muscles retained their fascicular arrangement, with the fascicles containing ∼1.5 times more fibers than age‐matched control muscles. At least three distinct types of muscle fibers were observed: degenerating, persisting (original), and newly formed (regenerated) fibers. A majority of newly formed fibers did not appear to undergo complete maturation, and morphologically they resembled myotubes. Sites of former motor end‐plates remained identifiable in persisting muscle fibers. Nuclear death was seen in all types of muscle fibers, especially in degenerating fibers. Nevertheless, the severely atrophic skeletal muscles continued to express developmentally and functionally important proteins, such as MyoD, myogenin, adult and embryonic subunits of the nicotinic acetylcholine receptor, and neural‐cell adhesion molecule. Despite the prolonged period of denervation, slow and fast types of myosin were found in surviving muscle fibers. The number of satellite cells was significantly reduced in long‐term denervated muscles, as compared with age‐matched control muscles. In 25‐month denervated muscle, satellite cells were only attached to persisting muscle fibers, but were never seen on newly formed fibers. Our data suggest that the absence of satellite cells in a population of immature newly formed muscle fibers that has arisen as a result of continuous reparative myogenesis may be a crucial, although not necessarily the only, factor underlying the poor regenerative ability of long‐term denervated muscle. Anat Rec 263:139–154, 2001.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Differential Healing Activities of CD34+ and CD14+ Endothelial Cell Progenitors

Ola Awad; Eduard I. Dedkov; Chunhua Jiao; Steven A. Bloomer; Robert J. Tomanek; Gina C. Schatteman

Objective—Peripheral blood contains primitive (stem cell-like) and monocytic-like endothelial cell progenitors. Diabetes apparently converts these primitive progenitors, from a pro-angiogenic to anti-angiogenic phenotype. Monocytic progenitors seem to be less affected by diabetes, but potential pro-angiogenic activities of freshly isolated monocytic progenitors remain unexplored. We compared the ability of primitive and monocytic endothelial cell progenitors to stimulate vascular growth and healing in diabetes and investigated potential molecular mechanisms through which the cells mediate their in vivo effects. Methods and Results—Human CD34+ primitive progenitors and CD14+ monocytic progenitors were injected locally into the ischemic limbs of diabetic mice. CD14+ cell therapy improved healing and vessel growth, although not as rapidly or effectively as CD34+ cell treatment. Western blot analysis revealed that cell therapy modulated expression of molecules in the VEGF, MCP-1, and angiopoietin pathways. Conclusions—Injection of freshly isolated circulating CD14+ cells improves healing and vascular growth indicating their potential for use in acute clinical settings. Importantly, CD14+ cells could provide a therapeutic option for people with diabetes, the function of whose CD34+ cells may be compromised. At least some progenitor-induced healing probably is mediated through increased sensitivity to VEGF and increases in MCP-1, and possibly modulation of angiopoietins.


Acta Neuropathologica | 2002

Survival of Schwann cells in chronically denervated skeletal muscles.

Eduard I. Dedkov; Tatiana Y. Kostrominova; Andrei B. Borisov; Bruce M. Carlson

Abstract. It is well established that over time Schwann cells disappear from the endoneurial space of the distal stump of a chronically transected sciatic nerve trunk. Nevertheless, the status of the Schwann cells within terminal branches of the transected sciatic nerve remains poorly understood. To elucidate this issue we examined the endoneurial space of the intramuscular nerves in rat hindlimb skeletal muscles, which had been denervated for a 25-month period. Based on specific ultrastructural characteristics, we identified a small population of viable Schwann cells within the intramuscular nerve trunks. The surviving Schwann cells continued to be immunopositive for both S-100 protein and neural cell adhesion molecule. In addition, reverse transcription-polymerase chain reaction and/or Western blot analyses have shown that at least two molecules, brain-derived neurotrophic factor and a non-catalytic truncated form of tyrosine protein kinase receptor B, which could potentially participate in the process of nerve repair, were detectable in chronically denervated skeletal muscle. Our results demonstrate that Schwann cells can survive inside the intramuscular nerve trunks of denervated skeletal muscle for a 25-month period without axonal contact.


Journal of Histochemistry and Cytochemistry | 2003

Aging of Skeletal Muscle Does Not Affect the Response of Satellite Cells to Denervation

Eduard I. Dedkov; Andrei B. Borisov; Anton Wernig; Bruce M. Carlson

Satellite cells (SCs) are the main source of new fibers in regenerating skeletal muscles and the key contributor to extra nuclei in growing fibers during postnatal development. Aging results in depletion of the SC population and in the reduction of its proliferative activity. Although it has been previously determined that under conditions of massive fiber death in vivo the regenerative potential of SCs is not impaired in old muscle, no studies have yet tested whether advanced age is a factor that may restrain the response of SCs to muscle denervation. The present study is designed to answer this question, comparing the changes of SC numbers in tibialis anterior (TA) muscles from young (4 months) and old (24 months) WI/HicksCar rats after 2 months of denervation. Immunostaining with antibodies against M-cadherin and NCAM was used to detect and count the SCs. The results demonstrate that the percentages of both M-cadherin- and NCAM-positive SCs (SC/Fibers × 100) in control TA muscles from young rats (5.6 ± 0.5% and 1.4 ± 0.2%, respectively) are larger than those in old rats (2.3 ± 0.3% and 0.5 ± 0.1%, respectively). At the same time, in 2-month denervated TA muscles the percentages of M-cadherin and NCAM positive SC are increased and reach a level that is comparable between young (16.2 ± 0.9% and 7.5 ± 0.5%, respectively) and old (15.9 ± 0.7% and 10.1 ± 0.5%, respectively) rats. Based on these data, we suggest that aging does not repress the capacity of SC to become activated and grow in the response to muscle denervation.


Circulation-arrhythmia and Electrophysiology | 2013

Both Hypothyroidism and Hyperthyroidism Increase Atrial Fibrillation Inducibility in Rats

Youhua Zhang; Eduard I. Dedkov; Diana Teplitsky; Nathan Y. Weltman; Christine J. Pol; Viswanathan Rajagopalan; Bianca Lee; A. Martin Gerdes

Background— Evidence indicates that cardiac hypothyroidism may contribute to heart failure progression. It is also known that heart failure is associated with an increased risk of atrial fibrillation (AF). Although it is established that hyperthyroidism increases AF incidence, the effect of hypothyroidism on AF is unclear. This study investigated the effects of different thyroid hormone levels, ranging from hypothyroidism to hyperthyroidism on AF inducibility in thyroidectomized rats. Methods and Results— Thyroidectomized rats with serum-confirmed hypothyroidism 1 month after surgery were randomized into hypothyroid (N=9), euthyroid (N=9), and hyperthyroid (N=9) groups. Rats received placebo, 3.3-mg L-thyroxine (T4), or 20-mg T4 pellets (60-day release form) for 2 months, respectively. At the end of treatment, hypothyroid, euthyroid, and hyperthyroid status was confirmed. Hypothyroid animals showed cardiac atrophy and reduced cardiac systolic and diastolic functions, whereas hyperthyroid rats exhibited cardiac hypertrophy and increased cardiac function. Hypothyroidism and hyperthyroidism produced opposite electrophysiological changes in heart rates and atrial effective refractory period, but both significantly increased AF susceptibility. AF incidence was 78% in hypothyroid, 67% in hyperthyroid, and the duration of induced AF was also longer, compared with 11% in the euthyroid group (all P<0.05). Hypothyroidism increased atrial interstitial fibrosis, but connexin 43 was not affected. Conclusions— Both hypothyroidism and hyperthyroidism lead to increased AF vulnerability in a rat thyroidectomy model. Our results stress that normal thyroid hormone levels are required to maintain normal cardiac electrophysiology and to prevent cardiac arrhythmias and AF.


Circulation | 2006

The Coronary Microcirculation in Cyanotic Congenital Heart Disease

Eduard I. Dedkov; Joseph K. Perloff; Robert J. Tomanek; Michael C. Fishbein; David D. Gutterman

Background— Despite an appreciable increase in basal coronary blood flow in cyanotic congenital heart disease, flow reserve remains normal. We hypothesized that preservation of flow reserve resides in remodeling of the coronary microcirculation. Microcirculatory morphometric analyses were performed to test this hypothesis. Methods and Results— Necropsy specimens from 4 sources were studied: (1) hearts from patients with Eisenmenger’s syndrome (A; n=5), (2) structurally abnormal hearts with ventricular hypertrophy (B; n=8), (3) structurally normal hearts with ventricular hypertrophy (C; n=6), and (4) normal hearts (D; n=5). To compare responses of the microcirculation to hypoxia versus hypertrophy, sections were taken from the left ventricular free wall, which in group A, was hypoxemic but not hypertrophied; in groups B and C, was hypertrophied but not hypoxemic; and in group D, was neither hypertrophied nor hypoxemic. Coronary arterioles were immunolabeled for smooth muscle &agr;-actin. Measured morphometric parameters included long and short axes, area, and perimeter. Arteriolar length, volume and surface densities were calculated. There was a significant intergroup difference for arteriolar length density (P=0.03) and diameter (P=0.03). Total length density in group A hearts was markedly lower, but mean arteriolar diameter was significantly greater (34%) compared with group B (P=0.03). Arteriolar volume density was similar to that in the other groups. Conclusions— Remodeling of the coronary microcirculation is the key mechanism for preservation of flow reserve in cyanotic congenital heart disease. The increase in short axis (diameter) compensated for lower arteriolar length density and was the principal anatomic basis for maintenance of normal flow reserve.


Developmental Dynamics | 2007

Synectin/syndecan-4 regulate coronary arteriolar growth during development

Eduard I. Dedkov; Mathew T. Thomas; Milan Sonka; Fuxing Yang; Thomas Chittenden; John M. Rhodes; Michael Simons; Erik L. Ritman; Robert J. Tomanek

Syndecan‐4 and its cytoplasmic binding partner, synectin, are known to play a role in FGF‐2 signaling and vascular growth. To determine their roles in coronary artery/arteriolar formation and growth, we compared syndecan‐4 and synectin null mice with their wild‐type counterparts. Image analysis of arterioles visualized by smooth muscle α‐actin immunostaining revealed that synectin −/− mice had lower arteriolar length and volume densities than wild‐type mice. As shown by electron microscopic analysis, arterioles from the two did not differ in morphology, including their endothelial cell junctions, and the organization and distribution of smooth muscle. Using micro‐computer tomography, we found that the size and branching patterns of coronary arteries (diameters > 50 μm) were similar for the two groups, a finding that indicates that the growth of arteries is not influenced by a loss of synectin. Syndecan‐4 null male mice also had lower arteriolar length densities than their gender wild‐type controls. However, female syndecan‐4 null mice were characterized by higher arteriolar length and volume densities than their gender‐matched wild‐type controls. Thus, we conclude that both synectin and syndecan‐4 play a role in arteriolar development, a finding that is consistent with previous evidence that FGF‐2 plays a role in coronary arterial growth. Moreover, our data reveal that gender influences the arteriolar growth response to syndecan‐4 but not to synectin. Developmental Dynamics 236:2004–2010, 2007.


Histochemistry and Cell Biology | 2005

Differentiation of activated satellite cells in denervated muscle following single fusions in situ and in cell culture.

Andrei B. Borisov; Eduard I. Dedkov; Bruce M. Carlson

Satellite cells represent a cellular source of regeneration in adult skeletal muscle. It remains unclear why a large pool of stem myoblasts in denervated muscle does not compensate for the loss of muscle mass during post-denervation atrophy. In this study, we present evidence that satellite cells in long-term denervated rat muscle are able to activate synthesis of contractile proteins after single fusions in situ. This process of early differentiation leads to formation of abnormally diminutive myotubes. The localization of such dwarf myotubes beneath the intact basal lamina on the surface of differentiated muscle fibers shows that they form by fusion of neighboring satellites or by the progeny of a single satellite cell following one or two mitotic divisions. We demonstrated single fusions of myoblasts using electron microscopy, immunocytochemical labeling and high resolution confocal digital imaging. Sequestration of nascent myotubes by the rapidly forming basal laminae creates a barrier that limits further fusions. The recruitment of satellite cells in the formation of new muscle fibers results in a progressive decrease in their local densities, spatial separation and ultimate exhaustion of the myogenic cell pool. To determine whether the accumulation of aberrant dwarf myotubes is explained by the intrinsic decline of myogenic properties of satellite cells, or depends on their spatial separation and the environment in the tissue, we studied the fusion of myoblasts isolated from normal and denervated muscle in cell culture. The experiments with a culture system demonstrated that the capacity of myoblasts to synthesize contractile proteins without serial fusions depended on cell density and the availability of partners for fusion. Satellite cells isolated from denervated muscle and plated at fusion-permissive densities progressed through the myogenic program and actively formed myotubes, which shows that their myogenic potential is not considerably impaired. The results of this study suggest that under conditions of denervation, progressive spatial separation and confinement of many satellite cells within the endomysial tubes of atrophic muscle fibers and progressive interstitial fibrosis are the important factors that prevent their normal differentiation. Our findings also provide an explanation of why denervated muscle partially and temporarily is able to restore its functional capacity following injury and regeneration: the release of satellite cells from their sublaminal location provides the necessary space for a more active regenerative process.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Postmyocardial infarction remodeling and coronary reserve: effects of ivabradine and beta blockade therapy

Lance P. Christensen; Ron-ling Zhang; Wei Zheng; Joseph J. Campanelli; Eduard I. Dedkov; Robert M. Weiss; Robert J. Tomanek

We compared the effects of heart rate reduction (HRR) by the hyperpolarization-activated pacemaker current (I(f)) channel inhibitor ivabradine (MI+Iva) and the beta(1)-blocker atenolol (MI+Aten) on ventricular remodeling and perfusion after myocardial infarction (MI) in middle-aged (12 mo) Sprague-Dawley rats. Mean HRR was virtually identical in the two treated groups (19%). Four weeks after coronary artery ligation, maximal myocardial perfusion fell in the MI group but was preserved in infarcted rats treated with either Iva or Aten. However, coronary reserve in the remodeled hearts was preserved only with Iva, since Aten treatment elevated baseline perfusion in response to a higher wall stress. The higher maximal perfusion noted in the two treated groups was not due to arteriogenesis or angiogenesis. Plasma levels of angiotensin (ANG) II and myocardial ANG type 1 (AT(1)) receptor and transforming growth factor (TGF)-beta1 were reduced during the first week of treatment by both Iva and Aten. Moreover, treatment also reduced arteriolar perivascular collagen density. Despite these similar effects of Iva and Aten on vascularity and ANG II, Iva, but not Aten, attenuated the decline in ejection fraction and lowered left ventricular (LV) end-diastolic volume (LVEDV)-to-LV mass ratio, determined by echocardiography. In conclusion, 1) Iva has advantages over Aten in postinfarction therapy that are not due to differential effects of the drugs on heart rate, and 2) age limits growth factor upregulation, angiogenesis, and arteriogenesis in the postinfarcted heart.

Collaboration


Dive into the Eduard I. Dedkov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lance P. Christensen

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yevgen Bogatyryov

New York Institute of Technology College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Weiss

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Daniela McCooey

New York Institute of Technology College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youhua Zhang

New York Institute of Technology College of Osteopathic Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge