Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei I. Ivanov is active.

Publication


Featured researches published by Andrei I. Ivanov.


The Journal of Allergy and Clinical Immunology | 2011

Tight junction defects in patients with atopic dermatitis.

Anna De Benedetto; Nicholas Rafaels; Laura Y. McGirt; Andrei I. Ivanov; Steve N. Georas; Chris Cheadle; Alan E. Berger; Kunzhong Zhang; Sadasivan Vidyasagar; Takeshi Yoshida; Mark Boguniewicz; Tissa Hata; Lynda C. Schneider; Jon M. Hanifin; Richard L. Gallo; Natalija Novak; Stephan Weidinger; Terri H. Beaty; Donald Y.M. Leung; Kathleen C. Barnes; Lisa A. Beck

BACKGROUNDnAtopic dermatitis (AD) is characterized by dry skin and a hyperactive immune response to allergens, 2 cardinal features that are caused in part by epidermal barrier defects. Tight junctions (TJs) reside immediately below the stratum corneum and regulate the selective permeability of the paracellular pathway.nnnOBJECTIVEnWe evaluated the expression/function of the TJ protein claudin-1 in epithelium from AD and nonatopic subjects and screened 2 American populations for single nucleotide polymorphisms in the claudin-1 gene (CLDN1).nnnMETHODSnExpression profiles of nonlesional epithelium from patients with extrinsic AD, nonatopic subjects, and patients with psoriasis were generated using Illuminas BeadChips. Dysregulated intercellular proteins were validated by means of tissue staining and quantitative PCR. Bioelectric properties of epithelium were measured in Ussing chambers. Functional relevance of claudin-1 was assessed by using a knockdown approach in primary human keratinocytes. Twenty-seven haplotype-tagging SNPs in CLDN1 were screened in 2 independent populations with AD.nnnRESULTSnWe observed strikingly reduced expression of the TJ proteins claudin-1 and claudin-23 only in patients with AD, which were validated at the mRNA and protein levels. Claudin-1 expression inversely correlated with T(H)2 biomarkers. We observed a remarkable impairment of the bioelectric barrier function in AD epidermis. In vitro we confirmed that silencing claudin-1 expression in human keratinocytes diminishes TJ function while enhancing keratinocyte proliferation. Finally, CLDN1 haplotype-tagging SNPs revealed associations with AD in 2 North American populations.nnnCONCLUSIONnCollectively, these data suggest that an impairment in tight junctions contributes to the barrier dysfunction and immune dysregulation observed in AD subjects and that this may be mediated in part by reductions in claudin-1.


Journal of Investigative Dermatology | 2013

Activation of Epidermal Toll-Like Receptor 2 Enhances Tight Junction Function: Implications for Atopic Dermatitis and Skin Barrier Repair

I-Hsin Kuo; Amanda Carpenter-Mendini; Takeshi Yoshida; Laura Y. McGirt; Andrei I. Ivanov; Kathleen C. Barnes; Richard L. Gallo; Andrew W. Borkowski; Kenshi Yamasaki; Donald Y.M. Leung; Steve N. Georas; Anna De Benedetto; Lisa A. Beck

Atopic dermatitis (AD) is characterized by epidermal tight junction (TJ) defects and a propensity for Staphylococcus aureus (S. aureus) skin infections. S. aureus is sensed by many pattern recognition receptors including toll-like receptor (TLR) 2. We hypothesized that an effective innate immune response will include skin barrier repair and that this response is impaired in AD subjects. S. aureus-derived peptidoglycan (PGN) and synthetic TLR2 agonists enhanced TJ barrier and increased expression of TJ proteins, CLDN1, CLDN23, occludin and ZO-1 in primary human keratinocytes. A TLR2 agonist enhanced skin barrier recovery in human epidermis wounded by tape-stripping. Tlr2−/− mice had a delayed and incomplete barrier recovery following tape-stripping. AD subjects had reduced epidermal TLR2 expression as compared to nonatopic (NA) subjects, which inversely correlated (r= 0.654, P= 0.0004) with transepidermal water loss (TEWL). These observations indicate that TLR2 activation enhances skin barrier in murine and human skin and is an important part of a wound repair response. Reduced epidermal TLR2 expression observed in AD patients may play a role in their incompetent skin barrier.


The Journal of Allergy and Clinical Immunology | 2011

Polyinosinic:polycytidylic acid induces protein kinase D–dependent disassembly of apical junctions and barrier dysfunction in airway epithelial cells

Fariba Rezaee; Nida Meednu; Jason Emo; Bahman Saatian; Timothy J. Chapman; Nayden G. Naydenov; Anna De Benedetto; Lisa A. Beck; Andrei I. Ivanov; Steve N. Georas

BACKGROUNDnDisruption of the epithelial barrier might be a risk factor for allergen sensitization and asthma. Viral respiratory tract infections are strongly associated with asthma exacerbation, but the effects of respiratory viruses on airway epithelial barrier function are not well understood. Many viruses generate double-stranded RNA, which can lead to airway inflammation and initiate an antiviral immune response.nnnOBJECTIVESnWe investigated the effects of the synthetic double-stranded RNA polyinosinic:polycytidylic acid (polyI:C) on the structure and function of the airway epithelial barrier inxa0vitro.nnnMETHODSn16HBE14o- human bronchial epithelial cells and primary airway epithelial cells at an air-liquid interface were grown to confluence on Transwell inserts and exposed to polyI:C. We studied epithelial barrier function by measuring transepithelial electrical resistance and paracellular flux of fluorescent markers and structure of epithelial apical junctions by means of immunofluorescence microscopy.nnnRESULTSnPolyI:C induced a profound decrease in transepithelial electrical resistance and increase in paracellular permeability. Immunofluorescence microscopy revealed markedly reduced junctional localization of zonula occludens-1, occludin, E-cadherin, β-catenin, and disorganization of junction-associated actin filaments. PolyI:C induced protein kinase D (PKD) phosphorylation, and a PKD antagonist attenuated polyI:C-induced disassembly of apical junctions and barrier dysfunction.nnnCONCLUSIONSnPolyI:C has a powerful and previously unsuspected disruptive effect on the airway epithelial barrier. PolyI:C-dependent barrier disruption is mediated by disassembly of epithelial apical junctions, which is dependent on PKD signaling. These findings suggest a new mechanism potentially underlying the associations between viral respiratory tract infections, airway inflammation, and allergen sensitization.


International Review of Cell and Molecular Biology | 2013

Dynamics and Regulation of Epithelial Adherens Junctions: Recent Discoveries and Controversies

Andrei I. Ivanov; Nayden G. Naydenov

Adherens junctions (AJs) are evolutionarily conserved plasma-membrane structures that mediate cell-cell adhesions in multicellular organisms. They are organized by several types of adhesive integral membrane proteins, most notably cadherins and nectins that are clustered and stabilized by a number of cytoplasmic scaffolds. AJs are key regulators of tissue architecture and dynamics via control of cell proliferation, polarity, shape, motility, and survival. They are absolutely critical for normal tissue morphogenesis and their disruption results in pathological abnormalities in different tissues. Although the field of adherens-junction research dramatically progressed in recent years, a number of important questions remain controversial and poorly understood. This review outlines basic principles that regulate organization of AJs in mammalian epithelia and discusses recent advances and standing controversies in the field. A special attention is paid to the regulation of AJs by vesicle trafficking and the intracellular cytoskeleton as well as roles and mechanisms of adherens-junction disruption during tumor progression and tissue inflammation.


Molecular Biology of the Cell | 2012

Nonredundant roles of cytoplasmic β- and γ-actin isoforms in regulation of epithelial apical junctions.

Somesh Baranwal; Nayden G. Naydenov; Gianni Harris; Dugina Vb; Kathleen G. Morgan; Christine Chaponnier; Andrei I. Ivanov

The functional effects of cytoplasmic actins on epithelial junctions are examined by using isoform-specific siRNAs and cell-permeable inhibitory peptides. Unique roles of cytoplasmic actin isoforms in regulating structure and remodeling of adherens and tight junctions are revealed.


Journal of Virology | 2013

Sustained Protein Kinase D Activation Mediates Respiratory Syncytial Virus-Induced Airway Barrier Disruption

Fariba Rezaee; Samantha A. DeSando; Andrei I. Ivanov; Timothy J. Chapman; Sara A. Knowlden; Lisa A. Beck; Steve N. Georas

ABSTRACT Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell inserts and infected with RSV strain A2. We analyzed (i) epithelial apical junction complex (AJC) function, measuring transepithelial electrical resistance (TEER) and permeability to fluorescein isothiocyanate (FITC)-conjugated dextran, and (ii) AJC structure using immunofluorescent staining. Cells were pretreated or not with protein kinase D (PKD) inhibitors. UV-irradiated RSV served as a negative control. RSV infection led to a significant reduction in TEER and increase in permeability. Additionally it caused disruption of the AJC and remodeling of the apical actin cytoskeleton. Pretreatment with two structurally unrelated PKD inhibitors markedly attenuated RSV-induced effects. RSV induced phosphorylation of the actin binding protein cortactin in a PKD-dependent manner. UV-inactivated RSV had no effect on AJC function or structure. Our results suggest that RSV-induced airway epithelial barrier disruption involves PKD-dependent actin cytoskeletal remodeling, possibly dependent on cortactin activation. Defining the mechanisms by which RSV disrupts epithelial structure and function should enhance our understanding of the association between respiratory viral infections, airway inflammation, and allergen sensitization. Impaired barrier function may open a potential new therapeutic target for RSV-mediated lung diseases.


Cell Cycle | 2012

Loss of a membrane trafficking protein αSNAP induces non-canonical autophagy in human epithelia

Nayden G. Naydenov; Gianni Harris; Victor Morales; Andrei I. Ivanov

Autophagy is a catabolic process that sequesters intracellular proteins and organelles within membrane vesicles called autophagosomes with their subsequent delivery to lyzosomes for degradation. This process involves multiple fusions of autophagosomal membranes with different vesicular compartments; however, the role of vesicle fusion in autophagosomal biogenesis remains poorly understood. This study addresses the role of a key vesicle fusion regulator, soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP), in autophagy. Small interfering RNA-mediated downregulation of αSNAP expression in cultured epithelial cells stimulated the autophagic flux, which was manifested by increased conjugation of microtubule-associated protein light chain 3 (LC3-II) and accumulation of LC3-positive autophagosomes. This enhanced autophagy developed via a non-canonical mechanism that did not require beclin1-p150-dependent nucleation, but involved Atg5 and Atg7-mediated elongation of autophagosomal membranes. Induction of autophagy in αSNAP-depleted cells was accompanied by decreased mTOR signaling but appeared to be independent of αSNAP-binding partners, N-ethylmaleimide-sensitive factor and BNIP1. Loss of αSNAP caused fragmentation of the Golgi and downregulation of the Golgi-specific GTP exchange factors, GBF1, BIG1 and BIG2. Pharmacological disruption of the Golgi and genetic inhibition of GBF1 recreated the effects of αSNAP depletion on the autophagic flux. Our study revealed a novel role for αSNAP as a negative regulator of autophagy that acts by enhancing mTOR signaling and regulating the integrity of the Golgi complex.


eLife | 2016

Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling

Jianguo Wu; Andrei I. Ivanov; Paul B. Fisher; Zheng Fu

Polo-like kinase 1 (PLK1) is a key cell cycle regulator implicated in the development of various cancers, including prostate cancer. However, the functions of PLK1 beyond cell cycle regulation remain poorly characterized. Here, we report that PLK1 overexpression in prostate epithelial cells triggers oncogenic transformation. It also results in dramatic transcriptional reprogramming of the cells, leading to epithelial-to-mesenchymal transition (EMT) and stimulation of cell migration and invasion. Consistently, PLK1 downregulation in metastatic prostate cancer cells enhances epithelial characteristics and inhibits cell motility. The signaling mechanisms underlying the observed cellular effects of PLK1 involve direct PLK1-dependent phosphorylation of CRAF with subsequent stimulation of the MEK1/2-ERK1/2-Fra1-ZEB1/2 signaling pathway. Our findings highlight novel non-canonical functions of PLK1 as a key regulator of EMT and cell motility in normal prostate epithelium and prostate cancer. This study also uncovers a previously unanticipated role of PLK1 as a potent activator of MAPK signaling. DOI: http://dx.doi.org/10.7554/eLife.10734.001


Methods of Molecular Biology | 2014

Pharmacological inhibitors of exocytosis and endocytosis: novel bullets for old targets.

Andrei I. Ivanov

Pharmacological inhibitors of vesicle trafficking possess great promise as valuable analytical tools for the study of a variety of biological processes and as potential therapeutic agents to fight microbial infections and cancer. However, many commonly used trafficking inhibitors are characterized by poor selectivity that diminishes their use in solving basic problems of cell biology or drug development. Recent high-throughput chemical screens intensified the search for novel modulators of vesicle trafficking, and successfully identified a number of small molecules that inhibit exocytosis and endocytosis in different types of mammalian cells. This chapter provides a systematic overview of recently discovered inhibitors of vesicle trafficking. It describes cellular effects and mechanisms of action of novel inhibitors of exocytosis and endocytosis. Furthermore, it pays special attention to the selectivity and possible off-target effects of these inhibitors.


Tissue barriers | 2013

Novel mechanism of cytokine-induced disruption of epithelial barriers: Janus kinase and protein kinase D-dependent downregulation of junction protein expression.

Nayden G. Naydenov; Somesh Baranwal; Shadab Khan; Alex Feygin; Pooja Gupta; Andrei I. Ivanov

The ductal epithelium plays a key role in physiological secretion of pancreatic enzymes into the digestive system. Loss of barrier properties of the pancreatic duct may contribute to the development of pancreatitis and metastatic dissemination of pancreatic tumors. Proinflammatory cytokines are essential mediators of pancreatic inflammation and tumor progression; however, their effects on the integrity and barrier properties of the ductal epithelium have not been previously addressed. In the present study, we investigate mechanisms of cytokine-induced disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium. Exposure of HPAF-II human pancreatic epithelial cell monolayers to interferon (IFN)γ disrupted integrity and function of apical junctions as manifested by increased epithelial permeability and cytosolic translocation of AJ and TJ proteins. Tumor necrosis factor (TNF)α potentiated the effects of IFNγ on pancreatic epithelial junctions. The cytokine-induced increase in epithelial permeability and AJ/TJ disassembly was attenuated by pharmacological inhibition of Janus kinase (JAK) and protein kinase D (PKD). Loss of apical junctions in IFNγ/TNFα-treated HPAF-II cells was accompanied by JAK and PKD dependent decrease in expression of AJ (E-cadherin, p120 catenin) and TJ (occludin, ZO-1) proteins. Depletion of E-cadherin or p120 catenin recapitulated the effects of cytokines on HPAF-II cell permeability and junctions. Our data suggests that proinflammatory cytokines disrupt pancreatic epithelial barrier via expressional downregulation of key structural components of AJs and TJs. This mechanism is likely to be important for pancreatic inflammatory injury and tumorigenesis.

Collaboration


Dive into the Andrei I. Ivanov's collaboration.

Top Co-Authors

Avatar

Lisa A. Beck

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nayden G. Naydenov

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Steve N. Georas

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alex Feygin

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Fariba Rezaee

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anna De Benedetto

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Somesh Baranwal

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Susana Lechuga

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Takeshi Yoshida

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge