Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fariba Rezaee is active.

Publication


Featured researches published by Fariba Rezaee.


Tissue barriers | 2013

Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells

Bahman Saatian; Fariba Rezaee; Samantha A. DeSando; Jason Emo; Tim Chapman; Sara A. Knowlden; Steve N. Georas

Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma.


PLOS ONE | 2010

Neurotrophins Regulate Bone Marrow Stromal Cell IL-6 Expression through the MAPK Pathway

Fariba Rezaee; Stephanie L. Rellick; Giovanni Piedimonte; Stephen M. Akers; Heather O'Leary; Karen H. Martin; Michael Craig; Laura F. Gibson

Background The hosts response to infection is characterized by altered levels of neurotrophins and an influx of inflammatory cells to sites of injured tissue. Progenitor cells that give rise to the differentiated cellular mediators of inflammation are derived from bone marrow progenitor cells where their development is regulated, in part, by cues from bone marrow stromal cells (BMSC). As such, alteration of BMSC function in response to elevated systemic mediators has the potential to alter their function in biologically relevant ways, including downstream alteration of cytokine production that influences hematopoietic development. Methodology/Principal Findings In the current study we investigated BMSC neurotrophin receptor expression by flow cytometric analysis to determine differences in expression as well as potential to respond to NGF or BDNF. Intracellular signaling subsequent to neurotrophin stimulation of BMSC was analyzed by western blot, microarray analysis, confocal microscopy and real-time PCR. Analysis of BMSC Interleukin-6 (IL-6) expression was completed using ELISA and real-time PCR. Conclusion BMSC established from different individuals had distinct expression profiles of the neurotrophin receptors, TrkA, TrkB, TrkC, and p75NTR. These receptors were functional, demonstrated by an increase in Akt-phosphorylation following BMSC exposure to recombinant NGF or BDNF. Neurotrophin stimulation of BMSC resulted in increased IL-6 gene and protein expression which required activation of ERK and p38 MAPK signaling, but was not mediated by the NFκB pathway. BMSC response to neurotrophins, including the up-regulation of IL-6, may alter their support of hematopoiesis and regulate the availability of inflammatory cells for migration to sites of injury or infection. As such, these studies are relevant to the growing appreciation of the interplay between neurotropic mediators and the regulation of hematopoiesis.


Journal of Immunology | 2012

Lpa2 Is a Negative Regulator of Both Dendritic Cell Activation and Murine Models of Allergic Lung Inflammation

Jason Emo; Nida Meednu; Timothy J. Chapman; Fariba Rezaee; Marlene Balys; Troy D. Randall; Tirumalai Rangasamy; Steve N. Georas

Negative regulation of innate immune responses is essential to prevent excess inflammation and tissue injury and promote homeostasis. Lysophosphatidic acid (LPA) is a pleiotropic lipid that regulates cell growth, migration, and activation and is constitutively produced at low levels in tissues and in serum. Extracellular LPA binds to specific G protein-coupled receptors, whose function in regulating innate or adaptive immune responses remains poorly understood. Of the classical LPA receptors belonging to the Edg family, lpa2 (edg4) is expressed by dendritic cells (DC) and other innate immune cells. In this article, we show that DC from lpa2−/− mice are hyperactive compared with their wild-type counterparts and are less susceptible to inhibition by different LPA species. In transient-transfection assays, we found that lpa2 overexpression inhibits NF-κB–driven gene transcription. Using an adoptive-transfer approach, we found that allergen-pulsed lpa2−/− DC induced substantially more lung inflammation than did wild-type DC after inhaled allergen challenge. Finally, lpa2−/− mice develop greater allergen-driven lung inflammation than do their wild-type counterparts in models of allergic asthma involving both systemic and mucosal sensitization. Taken together, these findings identify LPA acting via lpa2 as a novel negative regulatory pathway that inhibits DC activation and allergic airway inflammation.


Journal of Virology | 2013

Sustained Protein Kinase D Activation Mediates Respiratory Syncytial Virus-Induced Airway Barrier Disruption

Fariba Rezaee; Samantha A. DeSando; Andrei I. Ivanov; Timothy J. Chapman; Sara A. Knowlden; Lisa A. Beck; Steve N. Georas

ABSTRACT Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell inserts and infected with RSV strain A2. We analyzed (i) epithelial apical junction complex (AJC) function, measuring transepithelial electrical resistance (TEER) and permeability to fluorescein isothiocyanate (FITC)-conjugated dextran, and (ii) AJC structure using immunofluorescent staining. Cells were pretreated or not with protein kinase D (PKD) inhibitors. UV-irradiated RSV served as a negative control. RSV infection led to a significant reduction in TEER and increase in permeability. Additionally it caused disruption of the AJC and remodeling of the apical actin cytoskeleton. Pretreatment with two structurally unrelated PKD inhibitors markedly attenuated RSV-induced effects. RSV induced phosphorylation of the actin binding protein cortactin in a PKD-dependent manner. UV-inactivated RSV had no effect on AJC function or structure. Our results suggest that RSV-induced airway epithelial barrier disruption involves PKD-dependent actin cytoskeletal remodeling, possibly dependent on cortactin activation. Defining the mechanisms by which RSV disrupts epithelial structure and function should enhance our understanding of the association between respiratory viral infections, airway inflammation, and allergen sensitization. Impaired barrier function may open a potential new therapeutic target for RSV-mediated lung diseases.


American Journal of Respiratory Cell and Molecular Biology | 2011

Respiratory Syncytial Virus Infection in Human Bone Marrow Stromal Cells

Fariba Rezaee; Laura F. Gibson; Debbie Piktel; Sreekumar Othumpangat; Giovanni Piedimonte

Respiratory syncytial virus (RSV) is the most common respiratory pathogen in infants and young children. The pathophysiology of this infection in the respiratory system has been studied extensively, but little is known about its consequences in other systems. We studied whether RSV infects human bone marrow stromal cells (BMSCs) in vitro and in vivo, and investigated whether and how this infection affects BMSC structure and hematopoietic support function. Primary human BMSCs were infected in vitro with recombinant RSV expressing green fluorescent protein. In addition, RNA from naive BMSCs was amplified by PCR, and the products were sequenced to confirm homology with the RSV genome. The BMSC cytoskeleton was visualized by immunostaining for actin. Finally, we analyzed infected BMSCs for the expression of multiple cytokines and chemokines, evaluated their hematopoietic support capacity, and measured their chemotactic activity for both lymphoid and myeloid cells. We found that BMSCs support RSV replication in vitro with efficiency that varies among cell lines derived from different donors; furthermore, RNA sequences homologous to the RSV genome were found in naive primary human BMSCs. RSV infection disrupted cytoskeletal actin microfilaments, altered cytokine/chemokine expression patterns, decreased the ability of BMSCs to support B cell maturation, and modulated local chemotaxis. Our data indicate that RSV infects human BMSCs in vitro, and this infection has important structural and functional consequences that might affect hematopoietic and immune functions. Furthermore, we have amplified viral RNA from naive primary BMSCs, suggesting that in vivo these cells provide RSV with an extrapulmonary target.


PLOS ONE | 2014

Regulation of T cell motility in vitro and in vivo by LPA and LPA2.

Sara A. Knowlden; Tara Capece; Milan Popovic; Timothy J. Chapman; Fariba Rezaee; Minsoo Kim; Steve N. Georas

Lysophosphatidic acid (LPA) and the LPA-generating enzyme autotaxin (ATX) have been implicated in lymphocyte trafficking and the regulation of lymphocyte entry into lymph nodes. High local concentrations of LPA are thought to be present in lymph node high endothelial venules, suggesting a direct influence of LPA on cell migration. However, little is known about the mechanism of action of LPA, and more work is needed to define the expression and function of the six known G protein-coupled receptors (LPA 1–6) in T cells. We studied the effects of 18∶1 and 16∶0 LPA on naïve CD4+ T cell migration and show that LPA induces CD4+ T cell chemorepulsion in a Transwell system, and also improves the quality of non-directed migration on ICAM-1 and CCL21 coated plates. Using intravital two-photon microscopy, lpa2−/− CD4+ T cells display a striking defect in early migratory behavior at HEVs and in lymph nodes. However, later homeostatic recirculation and LPA-directed migration in vitro were unaffected by loss of lpa2. Taken together, these data highlight a previously unsuspected and non-redundant role for LPA2 in intranodal T cell motility, and suggest that specific functions of LPA may be manipulated by targeting T cell LPA receptors.


Current Allergy and Asthma Reports | 2010

Dangerous Allergens: Why Some Allergens are Bad Actors

Steve N. Georas; Fariba Rezaee; Laurie B. Lerner; Lisa A. Beck

Immune responses can be compartmentalized into innate versus adaptive components. This relatively recent dichotomy positioned the innate immune system at the interface between the host and the external environment and provided a new conceptual framework with which to view allergic diseases, including asthma. Airway epithelial cells and dendritic cells are key components of the innate immune system in the nose and lung and are now known to be intimately involved in allergen recognition and in modulating allergic immune responses. Here we review current thinking about how these two key cell types sense and respond to inhaled allergens, and emphasize how an understanding of “allergic innate immunity” can translate into new thinking about mechanisms of allergen sensitization and potentially lead to new therapeutic targets.


Pediatric Rheumatology | 2008

Pediatric patient with systemic lupus erythematosus & congenital acquired immunodeficiency syndrome: An unusual case and a review of the literature

Elizabeth C. Chalom; Fariba Rezaee; Joel Mendelson

The coexistence of systemic lupus erythematosus (SLE) in patients with congenital human immunodeficiency virus (HIV) infection is rare. This is a case report of a child diagnosed with SLE at nine years of age. She initially did well on non-steroidal anti-inflammatory agents, hydroxychloroquine, and steroids. She then discontinued her anti-lupus medications and was lost to follow-up. At 13 years of age, her lupus symptoms had resolved and she presented with intermittent fevers, cachexia, myalgias, arthralgias, and respiratory symptoms. Through subsequent investigations, the patient was ultimately diagnosed with congenitally acquired immunodeficiency syndrome (AIDS).


Journal of Immunology | 2013

Pre-existing Tolerance Shapes the Outcome of Mucosal Allergen Sensitization in a Murine Model of Asthma

Timothy J. Chapman; Jason Emo; Sara A. Knowlden; Fariba Rezaee; Steve N. Georas

Recent published studies have highlighted the complexity of the immune response to allergens, and the various asthma phenotypes that arise as a result. Although the interplay of regulatory and effector immune cells responding to allergen would seem to dictate the nature of the asthmatic response, little is known regarding how tolerance versus reactivity to allergen occurs in the lung. The vast majority of mouse models study allergen encounter in naive animals, and therefore exclude the possibility that previous encounters with allergen may influence future sensitization. To address this, we studied sensitization to the model allergen OVA in mice in the context of pre-existing tolerance to OVA. Allergen sensitization by either systemic administration of OVA with aluminum hydroxide or mucosal administration of OVA with low-dose LPS was suppressed in tolerized animals. However, higher doses of LPS induced a mixed Th2 and Th17 response to OVA in both naive and tolerized mice. Of interest, tolerized mice had more pronounced Th17-type inflammation than did naive mice receiving the same sensitization, suggesting pre-existing tolerance altered the inflammatory phenotype. These data show that a pre-existing tolerogenic immune response to allergen can affect subsequent sensitization in the lung. These findings have potential significance for understanding late-onset disease in individuals with severe asthma.


The Journal of Allergy and Clinical Immunology | 2011

Polyinosinic:polycytidylic acid induces protein kinase D–dependent disassembly of apical junctions and barrier dysfunction in airway epithelial cells

Fariba Rezaee; Nida Meednu; Jason Emo; Bahman Saatian; Timothy J. Chapman; Nayden G. Naydenov; Anna De Benedetto; Lisa A. Beck; Andrei I. Ivanov; Steve N. Georas

Collaboration


Dive into the Fariba Rezaee's collaboration.

Top Co-Authors

Avatar

Steve N. Georas

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lisa A. Beck

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jason Emo

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Chapman

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrei I. Ivanov

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Nida Meednu

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Sara A. Knowlden

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bahman Saatian

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge