Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei L. Osterman is active.

Publication


Featured researches published by Andrei L. Osterman.


BMC Genomics | 2008

The RAST Server: Rapid Annotations using Subsystems Technology

Ramy K. Aziz; Daniela Bartels; Aaron A. Best; Matthew DeJongh; Terrence Disz; Robert Edwards; Kevin Formsma; Svetlana Gerdes; Elizabeth M. Glass; Michael Kubal; Folker Meyer; Gary J. Olsen; Robert Olson; Andrei L. Osterman; Ross Overbeek; Leslie K. McNeil; Daniel Paarmann; Tobias Paczian; Bruce Parrello; Gordon D. Pusch; Claudia I. Reich; Rick Stevens; Olga Vassieva; Veronika Vonstein; Andreas Wilke; Olga Zagnitko

BackgroundThe number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them.DescriptionWe describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment.The service normally makes the annotated genome available within 12–24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service.ConclusionBy providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes.


Cell | 2004

Protein tyrosine phosphatases in the human genome.

Andres Alonso; Joanna Sasin; Nunzio Bottini; Ilan Friedberg; Iddo Friedberg; Andrei L. Osterman; Adam Godzik; Tony Hunter; Jack E. Dixon; Tomas Mustelin

Tyrosine phosphorylation is catalyzed by protein tyrosine kinases, which are represented by 90 genes in the human genome. Here, we present the set of 107 genes in the human genome that encode members of the four protein tyrosine phosphatase (PTP) families. The four families of PTPases, their substrates, structure, function, regulation, and the role of these enzymes in human disease will be discussed.


Nucleic Acids Research | 2005

The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes

Ross Overbeek; Tadhg P. Begley; Ralph Butler; Jomuna V. Choudhuri; Han-Yu Chuang; Matthew Cohoon; Valérie de Crécy-Lagard; Naryttza N. Diaz; Terry Disz; Robert D. Edwards; Michael Fonstein; Ed D. Frank; Svetlana Gerdes; Elizabeth M. Glass; Alexander Goesmann; Andrew C. Hanson; Dirk Iwata-Reuyl; Roy A. Jensen; Neema Jamshidi; Lutz Krause; Michael Kubal; Niels Bent Larsen; Burkhard Linke; Alice C. McHardy; Folker Meyer; Heiko Neuweger; Gary J. Olsen; Robert Olson; Andrei L. Osterman; Vasiliy A. Portnoy

The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.


Journal of Bacteriology | 2003

Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655

Svetlana Gerdes; Michael D. Scholle; John W. Campbell; Gábor Balázsi; E. Ravasz; Matthew D. Daugherty; A. L. Somera; N. C. Kyrpides; I. Anderson; M. S. Gelfand; A. Bhattacharya; Vinayak Kapatral; Mark D'Souza; Mark V. Baev; Y. Grechkin; Faika Mseeh; Michael Fonstein; Ross Overbeek; Albert-László Barabási; Zoltn Oltvai; Andrei L. Osterman

Defining the gene products that play an essential role in an organisms functional repertoire is vital to understanding the system level organization of living cells. We used a genetic footprinting technique for a genome-wide assessment of genes required for robust aerobic growth of Escherichia coli in rich media. We identified 620 genes as essential and 3,126 genes as dispensable for growth under these conditions. Functional context analysis of these data allows individual functional assignments to be refined. Evolutionary context analysis demonstrates a significant tendency of essential E. coli genes to be preserved throughout the bacterial kingdom. Projection of these data over metabolic subsystems reveals topologic modules with essential and evolutionarily preserved enzymes with reduced capacity for error tolerance.


Nature Reviews Microbiology | 2008

Towards Environmental Systems Biology of Shewanella

James K. Fredrickson; Margaret F. Romine; Alexander S. Beliaev; Jennifer M. Auchtung; Michael E. Driscoll; Timothy S. Gardner; Kenneth H. Nealson; Andrei L. Osterman; Grigoriy E. Pinchuk; Jennifer L. Reed; Dmitry A. Rodionov; Jorge L. M. Rodrigues; Daad A. Saffarini; Margrethe H. Serres; Alfred M. Spormann; Igor B. Zhulin; James M. Tiedje

Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon cycling and have considerable potential for the remediation of contaminated environments and use in microbial fuel cells. Systems-level analysis of the model species Shewanella oneidensis MR-1 and other members of this genus has provided new insights into the signal-transduction proteins, regulators, and metabolic and respiratory subsystems that govern the remarkable versatility of the shewanellae.


Science | 2008

An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models.

Lyudmila G. Burdelya; Vadim Krivokrysenko; Thomas C. Tallant; Evguenia Strom; Anatoly S. Gleiberman; Damodar Gupta; Oleg V. Kurnasov; Farrel L. Fort; Andrei L. Osterman; Joseph A. DiDonato; Elena Feinstein; Andrei V. Gudkov

The toxicity of ionizing radiation is associated with massive apoptosis in radiosensitive organs. Here, we investigate whether a drug that activates a signaling mechanism used by tumor cells to suppress apoptosis can protect healthy cells from the harmful effects of radiation. We studied CBLB502, a polypeptide drug derived from Salmonella flagellin that binds to Toll-like receptor 5 (TLR5) and activates nuclear factor–κB signaling. A single injection of CBLB502 before lethal total-body irradiation protected mice from both gastrointestinal and hematopoietic acute radiation syndromes and resulted in improved survival. CBLB502 injected after irradiation also enhanced survival, but at lower radiation doses. It is noteworthy that the drug did not decrease tumor radiosensitivity in mouse models. CBLB502 also showed radioprotective activity in lethally irradiated rhesus monkeys. Thus, TLR5 agonists could potentially improve the therapeutic index of cancer radiotherapy and serve as biological protectants in radiation emergencies.


Current Opinion in Chemical Biology | 2003

Missing genes in metabolic pathways: a comparative genomics approach

Andrei L. Osterman; Ross Overbeek

The new techniques of genome context analysis--chromosomal gene clustering, protein fusions, occurrence profiles and shared regulatory sites--infer functional coupling between genes. In combination with metabolic reconstructions, these techniques can dramatically accelerate the pace of gene discovery.


Science | 2012

Structural basis of TLR5-flagellin recognition and signaling.

Sung-il Yoon; Oleg V. Kurnasov; Venkatesh Natarajan; Minsun Hong; Andrei V. Gudkov; Andrei L. Osterman; Ian A. Wilson

Flagellin Takes Its Toll The immune system recognizes bacterial infections by binding to conserved molecular fragments derived from the invading bacteria. Molecular mimics of these bacterial determinants have the potential to boost the immunogenicity of vaccines. Yoon et al. (p. 859) now report the crystal structure of the D1/D2 fragment of Salmonella flagellin, a protein critical for the motility of flagellated bacteria, with the ectodomain of zebrafish Toll-like receptor 5 (TLR5), the host receptor that binds to flagellin and signals the immune system to react. Two TLR5-flagellin heterodimers dimerized into a 2:2 tail-to-tail signaling complex. Mutational analysis and use of human TLR5 validated the signaling mechanism, which is conserved from zebrafish to humans. Bacterially derived flagellin binds to an innate immune receptor to form a tail-to-tail heterodimeric signaling complex. Toll-like receptor 5 (TLR5) binding to bacterial flagellin activates signaling through the transcription factor NF-κB and triggers an innate immune response to the invading pathogen. To elucidate the structural basis and mechanistic implications of TLR5-flagellin recognition, we determined the crystal structure of zebrafish TLR5 (as a variable lymphocyte receptor hybrid protein) in complex with the D1/D2/D3 fragment of Salmonella flagellin, FliC, at 2.47 angstrom resolution. TLR5 interacts primarily with the three helices of the FliC D1 domain using its lateral side. Two TLR5-FliC 1:1 heterodimers assemble into a 2:2 tail-to-tail signaling complex that is stabilized by quaternary contacts of the FliC D1 domain with the convex surface of the opposing TLR5. The proposed signaling mechanism is supported by structure-guided mutagenesis and deletion analyses on CBLB502, a therapeutic protein derived from FliC.


Cell | 2007

Bcl-2 and Bcl-XL Regulate Proinflammatory Caspase-1 Activation by Interaction with NALP1

Jean-Marie Bruey; Nathalie Bruey-Sedano; Frederic Luciano; Dayong Zhai; Ruchi Balpai; Chunyan Xu; Christina L. Kress; Beatrice Bailly-Maitre; Xiaoqing Li; Andrei L. Osterman; Shu-ichi Matsuzawa; Alexey Terskikh; Benjamin Faustin; John C. Reed

Caspases are intracellular proteases that cleave substrates involved in apoptosis or inflammation. In C. elegans, a paradigm for caspase regulation exists in which caspase CED-3 is activated by nucleotide-binding protein CED-4, which is suppressed by Bcl-2-family protein CED-9. We have identified a mammalian analog of this caspase-regulatory system in the NLR-family protein NALP1, a nucleotide-dependent activator of cytokine-processing protease caspase-1, which responds to bacterial ligand muramyl-dipeptide (MDP). Antiapoptotic proteins Bcl-2 and Bcl-X(L) bind and suppress NALP1, reducing caspase-1 activation and interleukin-1beta (IL-1beta) production. When exposed to MDP, Bcl-2-deficient macrophages exhibit more caspase-1 processing and IL-1beta production, whereas Bcl-2-overexpressing macrophages demonstrate less caspase-1 processing and IL-1beta production. The findings reveal an interaction of host defense and apoptosis machinery.


Nucleic Acids Research | 2003

The ERGOTM genome analysis and discovery system

Ross Overbeek; Niels Bent Larsen; Theresa L. Walunas; Mark D'Souza; Gordon D. Pusch; Eugene Selkov; Konstantinos Liolios; Viktor Joukov; Denis Kaznadzey; Iain Anderson; Anamitra Bhattacharyya; Henry Burd; Warren Gardner; Paul Hanke; Vinayak Kapatral; Natalia Mikhailova; Olga Vasieva; Andrei L. Osterman; Veronika Vonstein; Michael Fonstein; Natalia V. Ivanova; Nikos C. Kyrpides

The ERGO (http://ergo.integratedgenomics.com/ERGO/) genome analysis and discovery suite is an integration of biological data from genomics, biochemistry, high-throughput expression profiling, genetics and peer-reviewed journals to achieve a comprehensive analysis of genes and genomes. Far beyond any conventional systems that facilitate functional assignments, ERGO combines pattern-based analysis with comparative genomics by visualizing genes within the context of regulation, expression profiling, phylogenetic clusters, fusion events, networked cellular pathways and chromosomal neighborhoods of other functionally related genes. The result of this multifaceted approach is to provide an extensively curated database of the largest available integration of genomes, with a vast collection of reconstructed cellular pathways spanning all domains of life. Although access to ERGO is provided only under subscription, it is already widely used by the academic community. The current version of the system integrates 500 genomes from all domains of life in various levels of completion, 403 of which are available for subscription.

Collaboration


Dive into the Andrei L. Osterman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Zhang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nick V. Grishin

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ross Overbeek

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Svetlana Gerdes

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Margaret F. Romine

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Olga Zagnitko

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Margaret A. Phillips

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marat D. Kazanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge