Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nick V. Grishin is active.

Publication


Featured researches published by Nick V. Grishin.


Cell | 2008

Identification of the Acyltransferase that Octanoylates Ghrelin, an Appetite-Stimulating Peptide Hormone

Jing Yang; Michael S. Brown; Guosheng Liang; Nick V. Grishin; Joseph L. Goldstein

Ghrelin is a 28 amino acid, appetite-stimulating peptide hormone secreted by the food-deprived stomach. Serine-3 of ghrelin is acylated with an eight-carbon fatty acid, octanoate, which is required for its endocrine actions. Here, we identify GOAT (Ghrelin O-Acyltransferase), a polytopic membrane-bound enzyme that attaches octanoate to serine-3 of ghrelin. Analysis of the mouse genome revealed that GOAT belongs to a family of 16 hydrophobic membrane-bound acyltransferases that includes Porcupine, which attaches long-chain fatty acids to Wnt proteins. GOAT is the only member of this family that octanoylates ghrelin when coexpressed in cultured endocrine cell lines with prepro-ghrelin. GOAT activity requires catalytic asparagine and histidine residues that are conserved in this family. Consistent with its function, GOAT mRNA is largely restricted to stomach and intestine, the major ghrelin-secreting tissues. Identification of GOAT will facilitate the search for inhibitors that reduce appetite and diminish obesity in humans.


Cell | 2012

Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels

Masato Kato; Tina W. Han; Shanhai Xie; Kevin Y. Shi; Xinlin Du; Leeju C. Wu; Hamid Mirzaei; Elizabeth J. Goldsmith; Jamie Longgood; Jimin Pei; Nick V. Grishin; Douglas E. Frantz; Jay W. Schneider; She Chen; Lin Li; Michael R. Sawaya; David Eisenberg; Robert Tycko; Steven L. McKnight

Eukaryotic cells contain assemblies of RNAs and proteins termed RNA granules. Many proteins within these bodies contain KH or RRM RNA-binding domains as well as low complexity (LC) sequences of unknown function. We discovered that exposure of cell or tissue lysates to a biotinylated isoxazole (b-isox) chemical precipitated hundreds of RNA-binding proteins with significant overlap to the constituents of RNA granules. The LC sequences within these proteins are both necessary and sufficient for b-isox-mediated aggregation, and these domains can undergo a concentration-dependent phase transition to a hydrogel-like state in the absence of the chemical. X-ray diffraction and EM studies revealed the hydrogels to be composed of uniformly polymerized amyloid-like fibers. Unlike pathogenic fibers, the LC sequence-based polymers described here are dynamic and accommodate heterotypic polymerization. These observations offer a framework for understanding the function of LC sequences as well as an organizing principle for cellular structures that are not membrane bound.


Nucleic Acids Research | 2008

PROMALS3D: A tool for multiple protein sequence and structure alignments

Jimin Pei; Bong Hyun Kim; Nick V. Grishin

Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.


American Journal of Human Genetics | 2006

Molecular Characterization of Loss-of-Function Mutations in PCSK9 and Identification of a Compound Heterozygote

Zhenze Zhao; Yetsa A. Tuakli-Wosornu; Thomas A. Lagace; Lisa N. Kinch; Nick V. Grishin; Jay D. Horton; Jonathan C. Cohen; Helen H. Hobbs

Elevated levels of circulating low-density lipoprotein cholesterol (LDL-C) play a central role in the development of atherosclerosis. Mutations in proprotein convertase subtilisin/kexin type 9 (PCSK9) that are associated with lower plasma levels of LDL-C confer protection from coronary heart disease. Here, we show that four severe loss-of-function mutations prevent the secretion of PCSK9 by disrupting synthesis or trafficking of the protein. In contrast to recombinant wild-type PCSK9, which was secreted from cells into the medium within 2 hours, the severe loss-of-function mutations in PCSK9 largely abolished PCSK9 secretion. This finding predicted that circulating levels of PCSK9 would be lower in individuals with the loss-of-function mutations. Immunoprecipitation and immunoblotting of plasma for PCSK9 provided direct evidence that the serine protease is present in the circulation and identified the first known individual who has no immunodetectable circulating PCSK9. This healthy, fertile college graduate, who was a compound heterozygote for two inactivating mutations in PCSK9, had a strikingly low plasma level of LDL-C (14 mg/dL). The very low plasma level of LDL-C and apparent good health of this individual demonstrate that PCSK9 plays a major role in determining plasma levels of LDL-C and provides an attractive target for LDL-lowering therapy.


Nature Genetics | 2012

BAP1 loss defines a new class of renal cell carcinoma

Samuel Peña-Llopis; Silvia Vega-Rubin-de-Celis; Arnold Liao; Nan Leng; Andrea Pavia-Jimenez; Shanshan Wang; Toshinari Yamasaki; Leah Zhrebker; Sharanya Sivanand; Patrick Spence; Lisa N. Kinch; Tina Hambuch; Suneer Jain; Yair Lotan; Vitaly Margulis; Arthur I. Sagalowsky; Pia Banerji Summerour; Wareef Kabbani; S. W. Wendy Wong; Nick V. Grishin; Marc Laurent; Xian Jin Xie; Christian D. Haudenschild; Mark T. Ross; David R. Bentley; Payal Kapur; James Brugarolas

The molecular pathogenesis of renal cell carcinoma (RCC) is poorly understood. Whole-genome and exome sequencing followed by innovative tumorgraft analyses (to accurately determine mutant allele ratios) identified several putative two-hit tumor suppressor genes, including BAP1. The BAP1 protein, a nuclear deubiquitinase, is inactivated in 15% of clear cell RCCs. BAP1 cofractionates with and binds to HCF-1 in tumorgrafts. Mutations disrupting the HCF-1 binding motif impair BAP1-mediated suppression of cell proliferation but not deubiquitination of monoubiquitinated histone 2A lysine 119 (H2AK119ub1). BAP1 loss sensitizes RCC cells in vitro to genotoxic stress. Notably, mutations in BAP1 and PBRM1 anticorrelate in tumors (P = 3 × 10−5), and combined loss of BAP1 and PBRM1 in a few RCCs was associated with rhabdoid features (q = 0.0007). BAP1 and PBRM1 regulate seemingly different gene expression programs, and BAP1 loss was associated with high tumor grade (q = 0.0005). Our results establish the foundation for an integrated pathological and molecular genetic classification of RCC, paving the way for subtype-specific treatments exploiting genetic vulnerabilities.


Journal of Biological Chemistry | 2010

A Sequence Variation (I148M) in PNPLA3 Associated with Nonalcoholic Fatty Liver Disease Disrupts Triglyceride Hydrolysis

Shaoqing He; Christopher McPhaul; John Zhong Li; Rita Garuti; Lisa N. Kinch; Nick V. Grishin; Jonathan C. Cohen; Helen H. Hobbs

Obesity and insulin resistance are associated with deposition of triglycerides in tissues other than adipose tissue. Previously, we showed that a missense mutation (I148M) in PNPLA3 (patatin-like phospholipase domain-containing 3 protein) is associated with increased hepatic triglyceride content in humans. Here we examined the effect of the I148M substitution on the enzymatic activity and cellular location of PNPLA3. Structural modeling predicted that the substitution of methionine for isoleucine at residue 148 would restrict access of substrate to the catalytic serine at residue 47. In vitro assays using recombinant PNPLA3 partially purified from Sf9 cells confirmed that the wild type enzyme hydrolyzes emulsified triglyceride and that the I148M substitution abolishes this activity. Expression of PNPLA3-I148M, but not wild type PNPLA3, in cultured hepatocytes or in the livers of mice increased cellular triglyceride content. Cell fractionation studies revealed that ∼90% of wild type PNPLA3 partitioned between membranes and lipid droplets; substitution of isoleucine for methionine at position 148 did not alter the subcellular distribution of the protein. These data are consistent with PNPLA3-I148M promoting triglyceride accumulation by limiting triglyceride hydrolysis.


Nature | 2013

Identification of a candidate therapeutic autophagy-inducing peptide

Sanae Shoji-Kawata; Rhea Sumpter; Matthew J Leveno; Grant R. Campbell; Zhongju Zou; Lisa N. Kinch; Angela D. Wilkins; Qihua Sun; Kathrin Pallauf; Donna A. MacDuff; Carlos Huerta; Herbert W. Virgin; J. Bernd Helms; Ruud Eerland; Sharon A. Tooze; Ramnik J. Xavier; Deborah J. Lenschow; Ai Yamamoto; David S. King; Olivier Lichtarge; Nick V. Grishin; Stephen A. Spector; Dora Kaloyanova; Beth Levine

The lysosomal degradation pathway of autophagy has a crucial role in defence against infection, neurodegenerative disorders, cancer and ageing. Accordingly, agents that induce autophagy may have broad therapeutic applications. One approach to developing such agents is to exploit autophagy manipulation strategies used by microbial virulence factors. Here we show that a peptide, Tat–beclin 1—derived from a region of the autophagy protein, beclin 1, which binds human immunodeficiency virus (HIV)-1 Nef—is a potent inducer of autophagy, and interacts with a newly identified negative regulator of autophagy, GAPR-1 (also called GLIPR2). Tat–beclin 1 decreases the accumulation of polyglutamine expansion protein aggregates and the replication of several pathogens (including HIV-1) in vitro, and reduces mortality in mice infected with chikungunya or West Nile virus. Thus, through the characterization of a domain of beclin 1 that interacts with HIV-1 Nef, we have developed an autophagy-inducing peptide that has potential efficacy in the treatment of human diseases.


Molecular & Cellular Proteomics | 2009

Lysine Acetylation Is a Highly Abundant and Evolutionarily Conserved Modification in Escherichia Coli

Junmei Zhang; Robert Sprung; Jimin Pei; Xiaohong Tan; Sungchan Kim; Heng Zhu; Chuan-Fa Liu; Nick V. Grishin; Yingming Zhao

Lysine acetylation and its regulatory enzymes are known to have pivotal roles in mammalian cellular physiology. However, the extent and function of this modification in prokaryotic cells remain largely unexplored, thereby presenting a hurdle to further functional study of this modification in prokaryotic systems. Here we report the first global screening of lysine acetylation, identifying 138 modification sites in 91 proteins from Escherichia coli. None of the proteins has been previously associated with this modification. Among the identified proteins are transcriptional regulators, as well as others with diverse functions. Interestingly, more than 70% of the acetylated proteins are metabolic enzymes and translation regulators, suggesting an intimate link of this modification to energy metabolism. The new dataset suggests that lysine acetylation could be abundant in prokaryotic cells. In addition, these results also imply that functions of lysine acetylation beyond regulation of gene expression are evolutionarily conserved from bacteria to mammals. Furthermore, we demonstrate that bacterial lysine acetylation is regulated in response to stress stimuli.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology

Kimberly M. Szymanski; Derk D. Binns; René Bartz; Nick V. Grishin; Wei Ping Li; Anil K. Agarwal; Abhimanyu Garg; Richard G. W. Anderson; Joel M. Goodman

Lipodystrophy is a disorder characterized by a loss of adipose tissue often accompanied by severe hypertriglyceridemia, insulin resistance, diabetes, and fatty liver. It can be inherited or acquired. The most severe inherited form is Berardinelli-Seip Congenital Lipodystrophy Type 2, associated with mutations in the BSCL2 gene. BSCL2 encodes seipin, the function of which has been entirely unknown. We now report the identification of yeast BSCL2/seipin through a screen to detect genes important for lipid droplet morphology. The absence of yeast seipin results in irregular lipid droplets often clustered alongside proliferated endoplasmic reticulum (ER); giant lipid droplets are also seen. Many small irregular lipid droplets are also apparent in fibroblasts from a BSCL2 patient. Human seipin can functionally replace yeast seipin, but a missense mutation in human seipin that causes lipodystrophy, or corresponding mutations in the yeast gene, render them unable to complement. Yeast seipin is localized in the ER, where it forms puncta. Almost all lipid droplets appear to be on the ER, and seipin is found at these junctions. Therefore, we hypothesize that seipin is important for droplet maintenance and perhaps assembly. In addition to detecting seipin, the screen identified 58 other genes whose deletions cause aberrant lipid droplets, including 2 genes encoding proteins known to activate lipin, a lipodystrophy locus in mice, and 16 other genes that are involved in endosomal–lysosomal trafficking. The genes identified in our screen should be of value in understanding the pathway of lipid droplet biogenesis and maintenance and the cause of some lipodystrophies.


Bioinformatics | 2001

AL2CO: calculation of positional conservation in a protein sequence alignment

Jimin Pei; Nick V. Grishin

MOTIVATION Amino acid sequence alignments are widely used in the analysis of protein structure, function and evolutionary relationships. Proteins within a superfamily usually share the same fold and possess related functions. These structural and functional constraints are reflected in the alignment conservation patterns. Positions of functional and/or structural importance tend to be more conserved. Conserved positions are usually clustered in distinct motifs surrounded by sequence segments of low conservation. Poorly conserved regions might also arise from the imperfections in multiple alignment algorithms and thus indicate possible alignment errors. Quantification of conservation by attributing a conservation index to each aligned position makes motif detection more convenient. Mapping these conservation indices onto a protein spatial structure helps to visualize spatial conservation features of the molecule and to predict functionally and/or structurally important sites. Analysis of conservation indices could be a useful tool in detection of potentially misaligned regions and will aid in improvement of multiple alignments. RESULTS We developed a program to calculate a conservation index at each position in a multiple sequence alignment using several methods. Namely, amino acid frequencies at each position are estimated and the conservation index is calculated from these frequencies. We utilize both unweighted frequencies and frequencies weighted using two different strategies. Three conceptually different approaches (entropy-based, variance-based and matrix score-based) are implemented in the algorithm to define the conservation index. Calculating conservation indices for 35522 positions in 284 alignments from SMART database we demonstrate that different methods result in highly correlated (correlation coefficient more than 0.85) conservation indices. Conservation indices show statistically significant correlation between sequentially adjacent positions i and i + j, where j < 13, and averaging of the indices over the window of three positions is optimal for motif detection. Positions with gaps display substantially lower conservation properties. We compare conservation properties of the SMART alignments or FSSP structural alignments to those of the ClustalW alignments. The results suggest that conservation indices should be a valuable tool of alignment quality assessment and might be used as an objective function for refinement of multiple alignments. AVAILABILITY The C code of the AL2CO program and its pre-compiled versions for several platforms as well as the details of the analysis are freely available at ftp://iole.swmed.edu/pub/al2co/.

Collaboration


Dive into the Nick V. Grishin's collaboration.

Top Co-Authors

Avatar

Lisa N. Kinch

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jimin Pei

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Qian Cong

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bong Hyun Kim

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hong Zhang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hua Cheng

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Margaret A. Phillips

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wenlin Li

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zbyszek Otwinowski

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge