Andrei P. Sokolov
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrei P. Sokolov.
Journal of Climate | 2006
Ronald J. Stouffer; Jieyi Yin; Jonathan M. Gregory; Keith W. Dixon; Michael J. Spelman; William J. Hurlin; Andrew J. Weaver; Michael Eby; Gregory M. Flato; Hiroyasu Hasumi; Aixue Hu; Johann H. Jungclaus; Igor V. Kamenkovich; Anders Levermann; Marisa Montoya; S. Murakami; S. Nawrath; Akira Oka; W. R. Peltier; D. Y. Robitaille; Andrei P. Sokolov; Guido Vettoretti; S. L. Weber
The Atlantic thermohaline circulation (THC) is an important part of the earth’s climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere–ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-S v( 1 Sv 10 6 m 3 s 1 ) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate some weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.
Science | 2009
Jerry M. Melillo; John M. Reilly; David W. Kicklighter; Angelo Costa Gurgel; Timothy W. Cronin; Sergey Paltsev; Benjamin S. Felzer; Xiaodong Wang; Andrei P. Sokolov; C. Adam Schlosser
Biofuel Backfire For compelling economical, geopolitical, and environmental reasons, biofuels are considered an attractive alternative to fossil fuels for meeting future global energy demands. Melillo et al. (p. 1397, published online 22 October), however, suggest that a few serious drawbacks related to land use need to be considered. Based on a combined biogeochemistry and economic model, indirect land use (for example, clearing forested land for food crops to compensate for increased biofuel crop production on current farmlands) is predicted to generate more soil carbon loss than directly harvesting biofuel crops. Furthermore, increased fertilizer use for biofuels will add large amounts of nitrous oxide—a more effective heat-trapping molecule than carbon dioxide—to the atmosphere. Policy decisions regarding land and crop management thus need to consider the long-term implications of increased biofuel production. Land-use changes associated with biofuel production are predicted to increase greenhouse gas emissions. A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the 21st century. Our model predicts that indirect land use will be responsible for substantially more carbon loss (up to twice as much) than direct land use; however, because of predicted increases in fertilizer use, nitrous oxide emissions will be more important than carbon losses themselves in terms of warming potential. A global greenhouse gas emissions policy that protects forests and encourages best practices for nitrogen fertilizer use can dramatically reduce emissions associated with biofuels production.
Geophysical Research Letters | 2005
Jonathan M. Gregory; Keith W. Dixon; Ronald J. Stouffer; Andrew J. Weaver; E. Driesschaert; Michael Eby; Thierry Fichefet; Hiroyasu Hasumi; Aixue Hu; Johann H. Jungclaus; Igor V. Kamenkovich; Anders Levermann; Marisa Montoya; S. Murakami; S. Nawrath; Akira Oka; Andrei P. Sokolov; R. B. Thorpe
[ 1] As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration. Over 140 years, during which the CO2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, despite the fairly rapid increase and high final concentration of CO2. The models having the strongest overturning in the control climate tend to show the largest THC reductions. In all models, the THC weakening is caused more by changes in surface heat flux than by changes in surface water flux. No model shows a cooling anywhere, because the greenhouse warming is dominant.
Nature | 1999
John M. Reilly; Ronald G. Prinn; Jochen Harnisch; Jean. Fitzmaurice; Henry D. Jacoby; David W. Kicklighter; Peter H. Stone; Andrei P. Sokolov; Chien Wang
The Kyoto Protocol allows reductions in emissions of several ‘greenhouse’ gases to be credited against a CO2-equivalent emissions limit, calculated using ‘global warming potential’ indices for each gas. Using an integrated global-systems model, it is shown that a multi-gas control strategy could greatly reduce the costs of fulfilling the Kyoto Protocol compared with a CO2-only strategy. Extending the Kyoto Protocol to 2100 without more severe emissions reductions shows little difference between the two strategies in climate and ecosystem effects. Under a more stringent emissions policy, the use of global warming potentials as applied in the Kyoto Protocol leads to considerably more mitigation of climate change for multi-gas strategies than for the—supposedly equivalent—CO2-only control, thus emphasizing the limits of global warming potentials as a tool for political decisions.
Journal of Climate | 2009
Andrei P. Sokolov; Peter H. Stone; Chris E. Forest; Ronald G. Prinn; Marcus C. Sarofim; Mort Webster; Sergey Paltsev; Courtney Adam Schlosser; David W. Kicklighter; Stephanie Dutkiewicz; John M. Reilly; Chien Wang; Benjamin S. Felzer; Jerry M. Melillo; Henry D. Jacoby
Abstract The Massachusetts Institute of Technology (MIT) Integrated Global System Model is used to make probabilistic projections of climate change from 1861 to 2100. Since the model’s first projections were published in 2003, substantial improvements have been made to the model, and improved estimates of the probability distributions of uncertain input parameters have become available. The new projections are considerably warmer than the 2003 projections; for example, the median surface warming in 2091–2100 is 5.1°C compared to 2.4°C in the earlier study. Many changes contribute to the stronger warming; among the more important ones are taking into account the cooling in the second half of the twentieth century due to volcanic eruptions for input parameter estimation and a more sophisticated method for projecting gross domestic product (GDP) growth, which eliminated many low-emission scenarios. However, if recently published data, suggesting stronger twentieth-century ocean warming, are used to determine...
Journal of Climate | 2008
Gian-Kasper Plattner; Reto Knutti; Fortunat Joos; Thomas F. Stocker; W. von Bloh; Victor Brovkin; David Cameron; E. Driesschaert; Stephanie Dutkiewicz; Michael Eby; Neil R. Edwards; Thierry Fichefet; J. C. Hargreaves; Chris D. Jones; Marie-France Loutre; H. D. Matthews; Anne Mouchet; S. A. Mueller; S. Nawrath; A.R. Price; Andrei P. Sokolov; Kuno M. Strassmann; Andrew J. Weaver
Eight earth system models of intermediate complexity (EMICs) are used to project climate change commitments for the recent Intergovernmental Panel on Climate Change’s (IPCC’s) Fourth Assessment Report (AR4). Simulations are run until the year 3000 A.D. and extend substantially farther into the future than conceptually similar simulations with atmosphere–ocean general circulation models (AOGCMs) coupled to carbon cycle models. In this paper the following are investigated: 1) the climate change commitment in response to stabilized greenhouse gases and stabilized total radiative forcing, 2) the climate change commitment in response to earlier CO2 emissions, and 3) emission trajectories for profiles leading to the stabilization of atmospheric CO2 and their uncertainties due to carbon cycle processes. Results over the twenty-first century compare reasonably well with results from AOGCMs, and the suite of EMICs proves well suited to complement more complex models. Substantial climate change commitments for sea level rise and global mean surface temperature increase after a stabilization of atmospheric greenhouse gases and radiative forcing in the year 2100 are identified. The additional warming by the year 3000 is 0.6–1.6 K for the low-CO2 IPCC Special Report on Emissions Scenarios (SRES) B1 scenario and 1.3–2.2 K for the high-CO2 SRES A2 scenario. Correspondingly, the post-2100 thermal expansion commitment is 0.3–1.1 m for SRES B1 and 0.5–2.2 m for SRES A2. Sea level continues to rise due to thermal expansion for several centuries after CO2 stabilization. In contrast, surface temperature changes slow down after a century. The meridional overturning circulation is weakened in all EMICs, but recovers to nearly initial values in all but one of the models after centuries for the scenarios considered. Emissions during the twenty-first century continue to impact atmospheric CO2 and climate even at year 3000. All models find that most of the anthropogenic carbon emissions are eventually taken up by the ocean (49%–62%) in year 3000, and that a substantial fraction (15%–28%) is still airborne even 900 yr after carbon emissions have ceased. Future stabilization of atmospheric CO2 and climate change requires a substantial reduction of CO2 emissions below present levels in all EMICs. This reduction needs to be substantially larger if carbon cycle–climate feedbacks are accounted for or if terrestrial CO2 fertilization is not operating. Large differences among EMICs are identified in both the response to increasing atmospheric CO2 and the response to climate change. This highlights the need for improved representations of carbon cycle processes in these models apart from the sensitivity to climate change. Sensitivity simulations with one single EMIC indicate that both carbon cycle and climate sensitivity related uncertainties on projected allowable emissions are substantial.
Climatic Change | 1999
Ronald G. Prinn; Henry D. Jacoby; Andrei P. Sokolov; Chien Wang; Xiangming Xiao; Zonggui Yang; R. Eckhaus; Peter H. Stone; D. Ellerman; Jerry M. Melillo; J. Fitzmaurice; David W. Kicklighter; Gary L. Holian; Yunzhi Liu
Alternative policies to address global climate change are being debated in many nations and within the United Nations Framework Convention on Climate Change. To help provide objective and comprehensive analyses in support of this process, we have developed a model of the global climate system consisting of coupled sub-models of economic growth and associated emissions, natural fluxes, atmospheric chemistry, climate, and natural terrestrial ecosystems. The framework of this Integrated Global System Model is described and the results of sample runs and a sensitivity analysis are presented. This multi-component model addresses most of the major anthropogenic and natural processes involved in climate change and also is computationally efficient. As such, it can be used effectively to study parametric and structural uncertainty and to analyze the costs and impacts of many policy alternatives. Initial runs of the model have helped to define and quantify a number of feedbacks among the sub-models, and to elucidate the geographical variations in several variables that are relevant to climate science and policy. The effect of changes in climate and atmospheric carbon dioxide levels on the uptake of carbon and emissions of methane and nitrous oxide by land ecosystems is one potentially important feedback which has been identified. The sensitivity analysis has enabled preliminary assessment of the effects of uncertainty in the economic, atmospheric chemistry, and climate sub-models as they influence critical model results such as predictions of temperature, sea level, rainfall, and ecosystem productivity. We conclude that uncertainty regarding economic growth, technological change, deep oceanic circulation, aerosol radiative forcing, and cloud processes are important influences on these outputs.
Journal of Climate | 2013
Kirsten Zickfeld; Michael Eby; Andrew J. Weaver; Kaitlin Alexander; Elisabeth Crespin; Neil R. Edwards; A. V. Eliseev; Georg Feulner; Thierry Fichefet; Chris E. Forest; Pierre Friedlingstein; Hugues Goosse; Philip B. Holden; Fortunat Joos; Michio Kawamiya; David W. Kicklighter; Hendrik Kienert; Katsumi Matsumoto; I. I. Mokhov; Erwan Monier; Steffen M. Olsen; Jens Olaf Pepke Pedersen; Mahe Perrette; Gwenaëlle Philippon-Berthier; Andy Ridgwell; Adam Schlosser; Thomas Schneider von Deimling; Gary Shaffer; Andrei P. Sokolov; Renato Spahni
AbstractThis paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 resu...
Climate Policy | 2008
Sergey Paltsev; John M. Reilly; Henry D. Jacoby; Angelo Costa Gurgel; Gilbert E. Metcalf; Andrei P. Sokolov; Jennifer F. Holak
In 2007 the US Congress began considering a set of bills to implement a cap-and-trade system to limit the nations greenhouse gas (GHG) emissions. The MIT Integrated Global System Model (IGSM)—and its economic component, the Emissions Prediction and Policy Analysis (EPPA) model—were used to assess these proposals. In the absence of policy, the EPPA model projects a doubling of US greenhouse gas emissions by 2050. Global emissions, driven by growth in developing countries, are projected to increase even more. Unrestrained, these emissions would lead to an increase in global CO2 concentration from a current level of 380 ppmv to about 550 ppmv by 2050 and to near 900 ppmv by 2100, resulting in a year 2100 global temperature 3.5–4.5°C above the current level. The more ambitious of the Congressional proposals could limit this increase to around 2°C, but only if other nations, including developing countries, also strongly controlled greenhouse gas emissions. With these more aggressive reductions, the economic cost measured in terms of changes in total welfare in the United States could range from 1.5% to almost 2% by the 2040–2050 period, with 2015 CO2-equivalent prices between
Global Biogeochemical Cycles | 1998
Xiangming Xiao; Jerry M. Melillo; David W. Kicklighter; A. D. McGuire; Ronald G. Prinn; Chien Wang; Peter H. Stone; Andrei P. Sokolov
30 and