Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei V. Medvedev is active.

Publication


Featured researches published by Andrei V. Medvedev.


Brain Research Bulletin | 2000

Kainic acid induces distinct types of epileptiform discharge with differential involvement of hippocampus and neocortex.

Andrei V. Medvedev; Lorraine Mackenzie; Jennifer Hiscock; John O. Willoughby

Systemic administration of kainic acid (KA), an excitatory amino acid agonist, provides a model of epilepsy due to increased neural excitation. We examined discharges using multi-channel EEG recording and spectral analysis in rats implanted with neocortical and hippocampal electrodes after intravenous infusion of KA (10 mg/kg), until and including the first convulsive seizure. Gamma activity (30-80 Hz) increased in hippocampus from 3-9 min after KA administration. Two types of preconvulsive bilateral rhythmic discharges were observed, both consisting of generalised high voltage sharp waves at low frequencies (<10 Hz) mixed with fast oscillations (<20 Hz): (1) generalised non-convulsive discharges (GNCD) occurred in all animals and (2) spike-wave discharges (SW), predominantly localised in neocortex, occurred in 45% of animals. Convulsive seizure evolved out of a GNCD. Spectral profiles of epileptiform discharges were characterised by an increase in power of low (<10 Hz) and high (beta and gamma range, 20-80 Hz) frequencies which were differently expressed in neocortex and hippocampus. Thus, in this model of convulsive epilepsy caused by increased excitation, there is an early increase in gamma activity, a process that might contribute to synchronisation, and two distinct types of bilateral discharges, hippocampal-neocortical (GNCD) and preferentially neocortical (SW). Neocortical, not hippocampal, changes in EEG power correlated with development of convulsive behaviours.


Neuroscience | 1997

Fos Induction Following Systemic Kainic Acid: Early Expression in Hippocampus and Later Widespread Expression Correlated With Seizure

John O. Willoughby; Lorraine Mackenzie; Andrei V. Medvedev; Jennifer Hiscock

We determined the distribution of Fos protein expression in a model of generalised epilepsy caused by excessive neuronal excitation. Fos immunoreactivity was mapped in forebrain in unrestrained rats, previously prepared with an indwelling venous catheter, after the intravenous administration of kainic acid (10 mg/kg). We determined cerebral activation following various periods of exposure to kainic acid by using intravenous administration of pentobarbitone to prevent further activation. Within a few minutes, kainic acid caused episodes of staring, sniffing, wet dog shakes, nodding and chewing. Fos induction occurred initially and simultaneously in hippocampus, subiculum, septum and entorhinal cortex as early as 9.5 min after kainate injection. After up to 40 min of staring, sniffing, wet dog shakes, nodding and chewing, Fos induction was not further increased above levels present within the first 9.5 min. After 56 +/- 6 min a motor convulsion occurred, initially affecting the jaw, head and tail and variably extending to the forelimbs, trunk or hindlimbs. Following the convulsive event, additional Fos was expressed in hippocampus, thalamus, caudate-putamen and other subcortical structures and in the cerebral cortex. Fos induction was sometimes asymmetric in entorhinal, visual, piriform, cingulum, parietal and frontal cortices and in amygdala and dorsal endopiriform area. Electroencephalographic recordings after a few minutes exposure to kainic acid revealed an increased amplitude of fast frequencies in hippocampus which appeared to correlate with Fos induction in this structure. The findings are generally consistent with the reported distribution and slow development of kainic acid-induced seizure activity using electrophysiological and deoxyglucose methods. However, the Fos distribution suggests that (i) hippocampal, possibly dentate, activation precedes significant activation elsewhere, (ii) extensive involvement of other cerebral structures and cerebral cortex occurs simultaneously and correlates with motor seizures and (iii) brain structures can be recruited asymmetrically.


Network: Computation In Neural Systems | 2003

Neurodynamics for auditory stream segregation: tracking sounds in the mustached bat's natural environment

Jagmeet S Kanwal; Andrei V. Medvedev; Christophe Micheyl

During navigation and the search phase of foraging, mustached bats emit ∼25 ms long echolocation pulses (at 10–40 Hz) that contain multiple harmonics of a constant frequency (CF) component followed by a short (3 ms) downward frequency modulation. In the context of auditory stream segregation, therefore, bats may either perceive a coherent pulse–echo sequence (PEPE…), or segregated pulse and echo streams (P–P–P… and E–E–E…). To identify the neural mechanisms for stream segregation in bats, we developed a simple yet realistic neural network model with seven layers and 420 nodes. Our model required recurrent and lateral inhibition to enable output nodes in the network to ‘latch-on’ to a single tone (corresponding to a CF component in either the pulse or echo), i.e., exhibit differential suppression by the alternating two tones presented at a high rate (>10 Hz). To test the applicability of our model to echolocation, we obtained neurophysiological data from the primary auditory cortex of awake mustached bats. Event-related potentials reliably reproduced the latching behaviour observed at output nodes in the network. Pulse as well as nontarget (clutter) echo CFs facilitated this latching. Individual single unit responses were erratic, but when summed over several recording sites, they also exhibited reliable latching behaviour even at 40 Hz. On the basis of these findings, we propose that a neural correlate of auditory stream segregation is present within localized synaptic activity in the mustached bats auditory cortex and this mechanism may enhance the perception of echolocation sounds in the natural environment.


Journal of Neurology, Neurosurgery, and Psychiatry | 2003

Persistent abnormality detected in the non-ictal electroencephalogram in primary generalised epilepsy.

John O. Willoughby; Sean P. Fitzgibbon; Kenneth J. Pope; Lorraine Mackenzie; Andrei V. Medvedev; C. R. Clark; M. P. Davey; Robert A. Wilcox

Objectives: Gamma oscillations (30–100 Hz gamma electroencephalographic (EEG) activity) correlate with high frequency synchronous rhythmic bursting in assemblies of cerebral neurons participating in aspects of consciousness. Previous studies in a kainic acid animal model of epilepsy revealed increased intensity of gamma rhythms in background EEG preceding epileptiform discharges, leading the authors to test for intensified gamma EEG in humans with epilepsy. Methods: 64 channel cortical EEG were recorded from 10 people with primary generalised epilepsy, 11 with partial epilepsy, and 20 controls during a quiescent mental state. Using standard methods of EEG analysis the strength of EEG rhythms (fast Fourier transformation) was quantified and the strengths of rhythms in the patient groups compared with with controls by unpaired t test at 1 Hz intervals from 1 Hz to 100 Hz. Results: In patients with generalised epilepsy, there was a threefold to sevenfold increase in power of gamma EEG between 30 Hz and 100 Hz (p<0.01). Analysis of three unmedicated patients with primary generalised epilepsies revealed an additional 10-fold narrow band increase of power around 35 Hz–40 Hz (p<0.0001). There were no corresponding changes in patients with partial epilepsy. Conclusions: Increased gamma EEG is probably a marker of the underlying ion channel or neurotransmitter receptor dysfunction in primary generalised epilepsies and may also be a pathophysiological prerequisite for the development of seizures. The finding provides a new diagnostic approach and also links the pathophysiology of generalised epilepsies to emerging concepts of neuronal correlates of consciousness.


Frontiers in Human Neuroscience | 2014

Sensitivity of fNIRS to cognitive state and load

Frank Anthony Fishburn; Megan Norr; Andrei V. Medvedev; Chandan J. Vaidya

Functional near-infrared spectroscopy (fNIRS) is an emerging low-cost noninvasive neuroimaging technique that measures cortical bloodflow. While fNIRS has gained interest as a potential alternative to fMRI for use with clinical and pediatric populations, it remains unclear whether fNIRS has the necessary sensitivity to serve as a replacement for fMRI. The present study set out to examine whether fNIRS has the sensitivity to detect linear changes in activation and functional connectivity in response to cognitive load, and functional connectivity changes when transitioning from a task-free resting state to a task. Sixteen young adult subjects were scanned with a continuous-wave fNIRS system during a 10-min resting-state scan followed by a letter n-back task with three load conditions. Five optical probes were placed over frontal and parietal cortices, covering bilateral dorsolateral PFC (dlPFC), bilateral ventrolateral PFC (vlPFC), frontopolar cortex (FP), and bilateral parietal cortex. Activation was found to scale linearly with working memory load in bilateral prefrontal cortex. Functional connectivity increased with increasing n-back loads for fronto-parietal, interhemispheric dlPFC, and local connections. Functional connectivity differed between the resting state scan and the n-back scan, with fronto-parietal connectivity greater during the n-back, and interhemispheric vlPFC connectivity greater during rest. These results demonstrate that fNIRS is sensitive to both cognitive load and state, suggesting that fNIRS is well-suited to explore the full complement of neuroimaging research questions and will serve as a viable alternative to fMRI.


Brain Research | 1995

Distribution of Fos-positive neurons in cortical and subcortical structures after picrotoxin-induced convulsions varies with seizure type

John O. Willoughby; Lorraine Mackenzie; Andrei V. Medvedev; Jennifer Hiscock

The distribution of Fos protein was mapped in rat brain following a single non-focal convulsive seizure. Single seizures were induced with intravenous picrotoxin in unhandled animals housed in isolation. Different convulsive behaviours occurred unpredictably. The least severe seizures were predominantly localised to the face, head and forelimbs, without loss of posture control (restricted seizures). The most extensive seizures affected all limbs and trunk, sometimes with falling (generalised seizures). There was a correlation between seizure behaviour and distribution of Fos induction. After restricted seizures, Fos was induced at highest levels in neocortex and piriform cortex and was prominent in entorhinal cortex, caudal-ventral caudate-putamen and amygdala. Regions of thalamus were consistently and lightly labelled, but Fos induction did not occur in hippocampus. After generalised seizures, there was Fos induction in cortex but less than after restricted seizures and, in three of four animals, also in dentate gyrus, hippocampus and subiculum. There was occasional or variable labelling of thalamus, basolateral amygdala and caudate-putamen. One animal with generalised seizures showed no hippocampal Fos induction. The findings indicate that picrotoxin induces seizures with at least two different patterns of neuronal involvement. The cortex, part of the caudate-putamen, amygdala and thalamus are involved in restricted seizures while the hippocampus, cortex and thalamus are involved in generalised seizures. The results do not support the view that generalised seizures are a progression from restricted forms. Cortical Fos involvement is entirely consistent with the participation of cortex in non-focal epilepsy. In these non-focal seizures, the dentate-hippocampus may be a source of excitation to cortex in the generalised group while the cortex appears to be the predominant site of excitation in the restricted group.


Journal of Neuroscience Research | 2003

Fluorocitrate‐mediated astroglial dysfunction causes seizures

John O. Willoughby; Lorraine Mackenzie; Marita Broberg; Anna E Thoren; Andrei V. Medvedev; Neil R. Sims; Michael Nilsson

A role for astroglia in epileptogenesis has been hypothesised but is not established. Low doses of fluorocitrate specifically and reversibly disrupt astroglial metabolism by blocking aconitase, an enzyme integral to the tricarboxylic acid cycle. We used cerebral cortex injections of fluorocitrate, at a dose that we demonstrated to inhibit astroglial metabolism selectively, to determine whether astroglial disturbances lead to seizures. Rats were halothane‐anesthetized, and 0.8 nmol of sodium fluorocitrate was injected into the cerebral cortex. Extradural electroencephalogram (EEG) electrodes were implanted, after which the anesthesia was ceased and the animals were observed. In all experiments, 14 of 15 fluorocitrate‐treated animals exhibited epileptiform EEG discharges, with some animals exhibiting convulsive seizures. Discharges commenced as early as 30 min postfluorocitrate injection. Intraperitoneal octanol, but not halothane by inhalation, given to test the possible participation of gap junctions in EEG discharge generation, blocked or delayed the occurrence of discharges after fluorocitrate. These results indicate that focal cerebrocortical astroglial dysfunction leads to focal epileptiform discharges and sometimes to convulsive seizures and that the process possibly depends on effects mediated by gap junctions.


International Journal of Neural Systems | 2011

TRANSCUTANEOUS FOCAL ELECTRICAL STIMULATION VIA CONCENTRIC RING ELECTRODES REDUCES SYNCHRONY INDUCED BY PENTYLENETETRAZOLE IN BETA AND GAMMA BANDS IN RATS

Walter G. Besio; Xiang Liu; Liling Wang; Andrei V. Medvedev; Kanthaiah Koka

Epilepsy is a neurological disorder that affects approximately one percent of the world population. Anti-epileptic drugs are ineffective in 25~30% of cases. Electrical stimulation to control seizures may be an additive therapy. We applied noninvasive transcutaneous focal electrical stimulation (TFES) via concentric ring electrodes on the scalp of rats after inducing seizures with pentylenetetrazole. We found a significant increase in synchrony within the beta-gamma bands during seizures and that TFES significantly reduced the synchrony of the beta-gamma activity and increased synchrony in the delta band.


Clinical Neurophysiology | 2002

Picrotoxin-induced generalised convulsive seizure in rat: changes in regional distribution and frequency of the power of electroencephalogram rhythms.

Lorraine Mackenzie; Andrei V. Medvedev; Jennifer Hiscock; Kenneth J. Pope; John O. Willoughby

OBJECTIVES It is unknown how generalised discharges in primary generalised epilepsy (PGE) develop from background brain electrical activity or how widespread these discharged are throughout the brain. Here we address this by determining which neural structures and rhythms lead to and participate in generalised discharges in the picrotoxin rat model of PGE. METHODS Rats with chronically implanted electrodes were infused with picrotoxin until a seizure occurred. This process we refer to as acute epileptogenesis. The electroencephalogram (EEG) was recorded and spectral analysis applied off-line to determine changes in the spectral power of contributing frequencies in 13 brain regions. RESULTS Two types of generalised discharge occurred, spindles and seizure, which were present in all brain regions studied. None of the frequencies (1-100 Hz) were significantly increased in background EEG before either spindles or seizure. Within the generalised discharges, power changes revealed significant increases in 6-8 Hz, most powerful in ventrolateral thalamus and neocortex. Gamma frequencies were increased significantly in neocortical structures during spindles with further increases in most structures at seizure onset. 1 Hz was significantly increased in parietal cortex during spindles with differential increases at seizure onset. CONCLUSIONS We conclude that gamma, 1 and 6-8 Hz frequencies do not appear to contribute to picrotoxin epileptogenesis but do play a role in generalised seizures. The distribution of these frequencies during discharges suggests that the spindles are thalamocortical events and that the seizure is a cortical event with downstream effects on other brain regions.


International Journal of Neuroscience | 1999

Autoregressive modeling of the EEG in systemic kainic acid-induced epileptogenesis

Andrei V. Medvedev; John O. Willoughby

Background activity as well as three kinds of bilateral epileptiform discharges, recorded from the cerebral cortex and hippocampus of freely behaving rats treated with intravenous kainic acid (KA), were analysed by the directed transfer function (DTF) method within multivariate autoregressive modeling of the EEG. This method reveals statistical influence (flow of activity) between brain regions at different frequencies. There was no significant influence between rhythms in different brain regions in the background EEG. Early after KA administration, low frequency rhythms (< 10Hz) in the frontal cortex began to lead slow rhythms in other areas and high frequency rhythms (20-60 Hz), possibly gamma oscillations, intensified in the hippocampus. In spike-wave discharges, frontal cortex led both low and high frequency rhythms. Initially during generalised non-convulsive discharges, slow rhythms originated from frontal cortex and high frequency rhythms from hippocampus while later, slow rhythms as well, often arose from hippocampus. During the convulsive discharge, the flow of activity of dominant slow rhythms repeatedly changed between hippocampus and neocortex, with more frequent dominance of the hippocampus, while hippocampus continued to lead high frequency rhythms. We conclude that KA-induced epileptiform discharges are cortical and hippocampal events, specifically that the frontal cortex is early to express low frequency rhythms and the hippocampus, high frequency rhythms. More generally, the findings suggest that epileptiform discharges result from interacting rhythms of different frequencies that arise from different structures, and that gamma oscillations possibly contribute to widespread synchronisation during some forms of epileptogenesis.

Collaboration


Dive into the Andrei V. Medvedev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter G. Besio

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. VanMeter

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Amir H. Gandjbakhche

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jagmeet S. Kanwal

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Oleksandr Makeyev

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Sergey V. Borisov

Georgetown University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge