Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter G. Besio is active.

Publication


Featured researches published by Walter G. Besio.


Journal of Neuroscience Methods | 2007

Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes

Kanthaiah Koka; Walter G. Besio

Electroencephalography (EEG) signals are spatio-temporal in nature. EEG has very good temporal resolution but typically does not possess high spatial resolution. The surface Laplacian enhances the spatial resolution and selectivity of the surface electrical activity recording. Concentric ring electrodes have been shown to estimate the surface Laplacian directly with significantly better spatial resolution than conventional electrodes. For this report movement-related potentials (MRP) signals were analyzed. The signals were recorded using tri-polar ring electrodes in the original configuration as well as in bipolar and unipolar configurations achieved by excluding or shorting recording surfaces of the tri-polar version, respectively. The electrodes were placed in an array scheme of 35, encompassing the area between Fz-Cz-Pz-P3-T5-T3-F7-F3 centered on C3. Data were measured in five steps sequentially using only seven electrodes at a time, displaced after each step and aligned during evaluation later. Subjects were cued to press a micro-switch. The signal-to-noise ratio (SNR), spatial selectivity, and mutual information (MI) of the MRP signals recorded with the different electrode systems were compared. The MRP signals recorded with the tri-polar concentric ring electrode system have significantly higher SNR than from bipolar concentric ring electrode and conventional disc electrode emulations. The tri-polar electrodes have also shown significantly higher spatial selectivity as well as significantly less mutual information between locations than the other two electrode configurations tested. These characteristics should make tri-polar concentric electrodes beneficial for EEG applications.


Annals of Biomedical Engineering | 2006

Development of a Tri-polar Concentric Ring Electrode for Acquiring Accurate Laplacian Body Surface Potentials

Walter G. Besio; R. Aakula; K. Koka; Weizhong Dai

Potentials recorded on the body surface from the heart are of a spatial and temporal function. The 12-lead electrocardiogram (ECG) provides a useful means of global temporal assessment; however, it yields limited spatial information due to the smoothing effect caused by the volume conductor. In an attempt to circumvent the smoothing problem, researchers have used the five-point method (FPM) to numerically estimate the analytical solution of the Laplacian with an array of monopolar electrodes. Researchers have also developed a bipolar concentric ring electrode system to estimate the analytical Laplacian, and others have used a quasi-bipolar electrode configuration. In a search to find an electrode configuration with a close approximation to the analytical Laplacian, development of a tri-polar concentric ring electrode based on the nine-point method (NPM) was conducted. A comparison of the NPM, FPM, and discrete form of the quasi-bipolar configuration was performed over a 400 × 400 mesh with 1/400 spacing by computer modeling. Different properties of bipolar, quasi-bipolar and tri-polar concentric ring electrodes were evaluated and compared, and verified with tank experiments. One-way analysis of variance (ANOVA) with post hoc t-test and Bonferroni corrections were performed to compare the performance of the various methods and electrode configurations. It was found that the tri-polar electrode has significantly improved accuracy and local sensitivity. This paper also discusses the development of an active sensor using the tri-polar electrode configuration. A 1-cm active Laplacian tri-polar sensor based on the NPM was tested and deemed feasible for acquiring Laplacian cardiac surface potentials.


International Journal of Neural Systems | 2011

TRANSCUTANEOUS FOCAL ELECTRICAL STIMULATION VIA CONCENTRIC RING ELECTRODES REDUCES SYNCHRONY INDUCED BY PENTYLENETETRAZOLE IN BETA AND GAMMA BANDS IN RATS

Walter G. Besio; Xiang Liu; Liling Wang; Andrei V. Medvedev; Kanthaiah Koka

Epilepsy is a neurological disorder that affects approximately one percent of the world population. Anti-epileptic drugs are ineffective in 25~30% of cases. Electrical stimulation to control seizures may be an additive therapy. We applied noninvasive transcutaneous focal electrical stimulation (TFES) via concentric ring electrodes on the scalp of rats after inducing seizures with pentylenetetrazole. We found a significant increase in synchrony within the beta-gamma bands during seizures and that TFES significantly reduced the synchrony of the beta-gamma activity and increased synchrony in the delta band.


Neuroscience | 2012

Ischemia-reperfusion impairs blood-brain barrier function and alters tight junction protein expression in the ovine fetus

Xiaodi Chen; Steven W. Threlkeld; Erin E. Cummings; Ilona Juan; Oleksandr Makeyev; Walter G. Besio; John Gaitanis; William A. Banks; Grazyna B. Sadowska; Barbara S. Stonestreet

The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (P<0.05) was 4 h after ischemia. Occludin and claudin-5 expressions decreased at 4 h, but returned toward control levels 24 and 48 h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between K(i) and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia.


Epilepsia | 2007

Effects of noninvasive transcutaneous electrical stimulation via concentric ring electrodes on pilocarpine-induced status epilepticus in rats.

Walter G. Besio; Kanthaiah Koka; Andrew J. Cole

Purpose: The aim of this pilot study was to investigate the antiepileptic effects of a novel noninvasive stimulation technique, transcutaneous electrical stimulation (TcES) via scalp concentric ring electrodes, on pilocarpine‐induced status epilepticus (SE) in rats.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2008

Application of Tripolar Concentric Electrodes and Prefeature Selection Algorithm for Brain–Computer Interface

Walter G. Besio; Hongbao Cao; Peng Zhou

For persons with severe disabilities, a brain-computer interface (BCI) may be a viable means of communication. Lapalacian electroencephalogram (EEG) has been shown to improve classification in EEG recognition. In this work, the effectiveness of signals from tripolar concentric electrodes and disc electrodes were compared for use as a BCI. Two sets of left/right hand motor imagery EEG signals were acquired. An autoregressive (AR) model was developed for feature extraction with a Mahalanobis distance based linear classifier for classification. An exhaust selection algorithm was employed to analyze three factors before feature extraction. The factors analyzed were 1) length of data in each trial to be used, 2) start position of data, and 3) the order of the AR model. The results showed that tripolar concentric electrodes generated significantly higher classification accuracy than disc electrodes.


Biomedical Signal Processing and Control | 2012

Automatic food intake detection based on swallowing sounds.

Oleksandr Makeyev; Paulo Lopez-Meyer; Stephanie Schuckers; Walter G. Besio; Edward Sazonov

This paper presents a novel fully automatic food intake detection methodology, an important step toward objective monitoring of ingestive behavior. The aim of such monitoring is to improve our understanding of eating behaviors associated with obesity and eating disorders. The proposed methodology consists of two stages. First, acoustic detection of swallowing instances based on mel-scale Fourier spectrum features and classification using support vector machines is performed. Principal component analysis and a smoothing algorithm are used to improve swallowing detection accuracy. Second, the frequency of swallowing is used as a predictor for detection of food intake episodes. The proposed methodology was tested on data collected from 12 subjects with various degrees of adiposity. Average accuracies of >80% and >75% were obtained for intra-subject and inter-subject models correspondingly with a temporal resolution of 30s. Results obtained on 44.1 hours of data with a total of 7305 swallows show that detection accuracies are comparable for obese and lean subjects. They also suggest feasibility of food intake detection based on swallowing sounds and potential of the proposed methodology for automatic monitoring of ingestive behavior. Based on a wearable non-invasive acoustic sensor the proposed methodology may potentially be used in free-living conditions.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2012

Toward a Noninvasive Automatic Seizure Control System in Rats With Transcranial Focal Stimulations via Tripolar Concentric Ring Electrodes

Oleksandr Makeyev; Xiang Liu; Hiram Luna-Munguia; Gabriela Rogel-Salazar; Samuel Mucio-Ramírez; Yuhong Liu; Yan Sun; Steven Kay; Walter G. Besio

Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study, we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback.


Neurobiology of Disease | 2015

Neutralizing anti-interleukin-1β antibodies modulate fetal blood-brain barrier function after ischemia.

Xiaodi Chen; Grazyna B. Sadowska; Jiyong Zhang; Jeong Eun Kim; Erin E. Cummings; Courtney A. Bodge; Yow Pin Lim; Oleksandr Makeyev; Walter G. Besio; John Gaitanis; Steven W. Threlkeld; William A. Banks; Barbara S. Stonestreet

We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0.03), and interleukin-1β protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r= -0.65, P<0.02) with anti-interleukin-1β monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1β monoclonal antibody infusions after ischemia result in brain anti-interleukin-1β antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1β protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1β, contributes to impaired blood-brain barrier function after ischemia in the fetus.


Annals of Biomedical Engineering | 2013

Automatic seizure detection in rats using Laplacian EEG and verification with human seizure signals.

Amal Feltane; G. Faye Boudreaux-Bartels; Walter G. Besio

Automated detection of seizures is still a challenging problem. This study presents an approach to detect seizure segments in Laplacian electroencephalography (tEEG) recorded from rats using the tripolar concentric ring electrode (TCRE) configuration. Three features, namely, median absolute deviation, approximate entropy, and maximum singular value were calculated and used as inputs into two different classifiers: support vector machines and adaptive boosting. The relative performance of the extracted features on TCRE tEEG was examined. Results are obtained with an overall accuracy between 84.81 and 96.51%. In addition to using TCRE tEEG data, the seizure detection algorithm was also applied to the recorded EEG signals from Andrzejak et al. database to show the efficiency of the proposed method for seizure detection.

Collaboration


Dive into the Walter G. Besio's collaboration.

Top Co-Authors

Avatar

Oleksandr Makeyev

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Xiang Liu

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Yacine Boudria

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanthaiah Koka

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Kay

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Amal Feltane

University of Rhode Island

View shared research outputs
Researchain Logo
Decentralizing Knowledge