Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrej Kral is active.

Publication


Featured researches published by Andrej Kral.


The New England Journal of Medicine | 2010

Profound Deafness in Childhood

Andrej Kral; Gerard M. O'Donoghue

Profound hearing loss in childhood has far-reaching consequences for children and their families. Recent interdisciplinary developments such as cochlear implants are transforming outcomes and offering many more opportunities for deaf children.


Brain | 2013

Single-sided deafness leads to unilateral aural preference within an early sensitive period

Andrej Kral; Peter Hubka; Silvia Heid; Jochen Tillein

Unilateral deafness has a high incidence in children. In addition to children who are born without hearing in one ear, children with bilateral deafness are frequently equipped only with one cochlear implant, leaving the other ear deaf. The present study investigates the effects of such single-sided deafness during development in the congenitally deaf cat. The investigated animals were either born with unilateral deafness or received a cochlear implant in one ear and were subjected to chronic monaural stimulation. In chronically stimulated animals, implantation ages were at the following three critical developmental points: early during the peak of functional cortical synaptogenesis in deaf animals; intermediate at the age when synaptic activity in the deaf cats dropped to the level of hearing control cats and finally, late at the age when the evoked synaptic activity fell below the level of hearing control cats. After periods of unilateral hearing, local field potentials were recorded from the cortical surface using a microelectrode at ∼100 recording positions. Stimulation was with cochlear implants at both ears. The measures evaluated were dependent only on the symmetry of aural input: paired differences of onset latencies and paired relations of peak amplitudes of local field potentials. A massive reorganization of aural preference in favour of the hearing ear was found in these measures if the onset of unilateral hearing was early (before or around the peak of functional synaptogenesis). The effect was reduced if onset of unilateral hearing was in the intermediate period, and it disappeared if the onset was late. In early onset of unilateral deafness, the used ear became functionally dominant with respect to local field potential onset latency and amplitude. This explains the inferior outcome of implantations at the second-implanted ear compared with first-implanted ear in children. However, despite a central disadvantage for the deaf ear, it still remained capable of activating the auditory cortex. Appropriate training may thus help to improve the performance at the second-implanted ear. In conclusion, periods of monaural stimulation should be kept as short as possible, and training focused on the deaf ear should be introduced after delayed second implantation in children.


PLOS ONE | 2013

Reorganization of the Connectivity of Cortical Field DZ in Congenitally Deaf Cat

Pascal Barone; Ludovic Lacassagne; Andrej Kral

Psychophysics and brain imaging studies in deaf patients have revealed a functional crossmodal reorganization that affects the remaining sensory modalities. Similarly, the congenital deaf cat (CDC) shows supra-normal visual skills that are supported by specific auditory fields (DZ-dorsal zone and P-posterior auditory cortex) but not the primary auditory cortex (A1). To assess the functional reorganization observed in deafness we analyzed the connectivity pattern of the auditory cortex by means of injections of anatomical tracers in DZ and A1 in both congenital deaf and normally hearing cats. A quantitative analysis of the distribution of the projecting neurons revealed the presence of non-auditory inputs to both A1 and DZ of the CDC which were not observed in the hearing cats. Firstly, some visual (areas 19/20) and somatosensory (SIV) areas were projecting toward DZ of the CDC but not in the control. Secondly, A1 of the deaf cat received a weak projection from the visual lateral posterior nuclei (LP). Most of these abnormal projections to A1 and DZ represent only a small fraction of the normal inputs to these areas. In addition, most of the afferents to DZ and A1 appeared normal in terms of areal specificity and strength of projection, with preserved but smeared nucleotopic gradient of A1 in CDCs. In conclusion, while the abnormal projections revealed in the CDC can participate in the crossmodal compensatory mechanisms, the observation of a limited reorganization of the connectivity pattern of the CDC implies that functional reorganization in congenital deafness is further supported also by normal cortico-cortical connectivity.


IEEE Transactions on Biomedical Engineering | 2011

Acoustic Events and “Optophonic” Cochlear Responses Induced by Pulsed Near-Infrared LASER

Ingo Ulrik Teudt; Hannes Maier; Claus Peter Richter; Andrej Kral

Optical stimulation of neural tissue within the cochlea was described as a possible alternative to electrical stimulation. Most optical stimulation was performed with pulsed lasers operating with near-infrared (NIR) light and in thermal confinement. Under these conditions, the coexistence of laser-induced optoacoustic stimulation of the cochlea (“optophony”) has not been analyzed yet. This study demonstrates that pulsed 1850-nm laser light used for neural stimulation also results in sound pressure levels up to 62 dB peak-to-peak equivalent sound pressure level (SPL) in air. The sound field was confined to a small volume along the laser beam. In dry nitrogen, laser-induced acoustic events disappeared. Hydrophone measurements demonstrated pressure waves for laser fibers immersed in water. In hearing rats, laser-evoked signals were recorded from the cochlea without targeting neural tissue. The signals showed a two-domain response differing in amplitude and latency functions, as well as sensitivity to white-noise masking. The first component had characteristics of a cochlear microphonic potential, and the second component was characteristic for a compound action potential. The present data demonstrate that laser-evoked acoustic events can stimulate a hearing cochlea. Whenever optical stimulation is used, care must be taken to distinguish between such “optophony” and the true optoneural response.


Hearing Research | 2014

Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation

Alice Burghard; Thomas Lenarz; Andrej Kral; Gerrit Paasche

Tissue formation around the electrode array of a cochlear implant has been suggested to influence preservation of residual hearing as well as electrical hearing performance of implanted subjects. Further, inhomogeneity in the electrical properties of the scala tympani shape the electrical field and affect current spread. Intracochlear trauma due to electrode insertion and the insertion site itself are commonly seen as triggers for the tissue formation. The present study investigates whether the insertion site, round window membrane (RWM) vs. cochleostomy (CS), or the sealing material, no seal vs. muscle graft vs. carboxylate cement, have an influence on the amount of fibrous tissue and/or new bone formation after CI implantation in the guinea pig. Hearing thresholds were determined by auditory brainstem response (ABR) measurements prior to implantation and after 28 days. The amount of tissue formation was quantified by evaluation of microscopic images obtained by a grinding/polishing procedure to keep the CI in place during histological processing. An insertion via the round window membrane resulted after 28 days in less tissue formation in the no seal and muscle seal condition compared to the cochleostomy approach. Between these two sealing techniques there was no difference. Sealing the cochlea with carboxylate cement resulted always in a strong new bone formation and almost total loss of residual hearing. The amount of tissue formation and the hearing loss correlated at 1-8 kHz. Consequently, the use of carboxylate cement as a sealing material in cochlear implantation should be avoided even in animal studies, whereas sealing the insertion site with a muscle graft did not induce an additional tissue growth compared to omitting a seal. For hearing preservation the round window approach should be used.


Neuropharmacology | 2013

TGF-beta superfamily member activin A acts with BDNF and erythropoietin to improve survival of spiral ganglion neurons in vitro☆

Odett Kaiser; Gerrit Paasche; T. Stöver; Stefanie Ernst; Thomas Lenarz; Andrej Kral; Athanasia Warnecke

Activins are regulators of embryogenesis, osteogenesis, hormones and neuronal survival. Even though activin receptor type II has been detected in spiral ganglion neurons (SGN), little is known about the role of activins in the inner ear. An activin-mediated neuroprotection is of considerable clinical interest since SGN are targets of electrical stimulation with cochlear implants in hearing impaired patients. Thus, the presence of activin type-I and type-II receptors was demonstrated immunocytochemically and the individual and combined effects of activin A, erythropoietin (EPO) and brain-derived neurotrophic factor (BDNF) on SGN were examined in vitro. SGN isolated from neonatal rats (P 3-5) were cultured in serum-free medium supplemented with activin A, BDNF and EPO. Compared to the negative control, survival rates of SGN were significantly improved when cultivated individually with activin A (p<0.001) and in combination with BDNF (p<0.001). Neither neurite outgrowth nor neuronal survival was influenced by the addition of EPO to activin A-treated neurons. However, when all three factors were added, a significantly (p<0.001) improved neuronal survival was observed (61.2±3.6%) compared to activin A (25.4±2.1%), BDNF (22.8±3.3%) and BDNF+EPO (19.2±1.5%). Under the influence of the EPO-inhibitors, this increase in neuronal survival was blocked. Acting with BDNF and EPO to promote neuronal survival in vitro, activin A presents an interesting factor for pharmacological intervention in the inner ear. The present study demonstrates a synergetic effect of a combined therapy with several trophic factors.


Stem Cell Research & Therapy | 2016

Biohybrid cochlear implants in human neurosensory restoration

Ariane Roemer; Ulrike Köhl; Omid Majdani; Stephan Klöß; Christine S. Falk; Sabine Haumann; Thomas Lenarz; Andrej Kral; Athanasia Warnecke

BackgroundThe success of cochlear implantation may be further improved by minimizing implantation trauma. The physical trauma of implantation and subsequent immunological sequelae can affect residual hearing and the viability of the spiral ganglion. An ideal electrode should therefore decrease post-implantation trauma and provide support to the residual spiral ganglion population. Combining a flexible electrode with cells producing and releasing protective factors could present a potential means to achieve this. Mononuclear cells obtained from bone marrow (BM-MNC) consist of mesenchymal and hematopoietic progenitor cells. They possess the innate capacity to induce repair of traumatized tissue and to modulate immunological reactions.MethodsHuman bone marrow was obtained from the patients that received treatment with biohybrid electrodes. Autologous mononuclear cells were isolated from bone marrow (BM-MNC) by centrifugation using the Regenlab™ THT-centrifugation tubes. Isolated BM-MNC were characterised using flow cytometry. In addition, the release of cytokines was analysed and their biological effect tested on spiral ganglion neurons isolated from neonatal rats. Fibrin adhesive (Tisseal™) was used for the coating of silicone-based cochlear implant electrode arrays for human use in order to generate biohybrid electrodes. Toxicity of the fibrin adhesive and influence on insertion, as well on the cell coating, was investigated. Furthermore, biohybrid electrodes were implanted in three patients.ResultsHuman BM-MNC release cytokines, chemokines, and growth factors that exert anti-inflammatory and neuroprotective effects. Using fibrin adhesive as a carrier for BM-MNC, a simple and effective cell coating procedure for cochlear implant electrodes was developed that can be utilised on-site in the operating room for the generation of biohybrid electrodes for intracochlear cell-based drug delivery. A safety study demonstrated the feasibility of autologous progenitor cell transplantation in humans as an adjuvant to cochlear implantation for neurosensory restoration.ConclusionThis is the first report of the use of autologous cell transplantation to the human inner ear. Due to the simplicity of this procedure, we hope to initiate its widespread utilization in various fields.


The Journal of Neuroscience | 2016

Cochlear Implant Stimulation of a Hearing Ear Generates Separate Electrophonic and Electroneural Responses.

Mika Sato; Peter Baumhoff; Andrej Kral

Electroacoustic stimulation in subjects with residual hearing is becoming more widely used in clinical practice. However, little is known about the properties of electrically induced responses in the hearing cochlea. In the present study, normal-hearing guinea pig cochleae underwent cochlear implantation through a cochleostomy without significant loss of hearing. Using recordings of unit activity in the midbrain, we were able to investigate the excitation patterns throughout the tonotopic field determined by acoustic stimulation. With the cochlear implant and the midbrain multielectrode arrays left in place, the ears were pharmacologically deafened and electrical stimulation was repeated in the deafened condition. The results demonstrate that, in addition to direct neuronal (electroneuronal) stimulation, in the hearing cochlea excitation of the hair cells occurs (“electrophonic responses”) at the cochlear site corresponding to the dominant temporal frequency components of the electrical stimulus, provided these are < 12 kHz. The slope of the rate–level functions of the neurons in the deafened condition was steeper and the firing rate was higher than in the hearing condition at those sites that were activated in the two conditions. Finally, in a monopolar stimulation configuration, the differences between hearing status conditions were smaller than in the narrower (bipolar) configurations. SIGNIFICANCE STATEMENT Stimulation with cochlear implants and hearing aids is becoming more widely clinically used in subjects with residual hearing. The neurophysiological characteristics underlying electroacoustic stimulation and the mechanism of its benefit remain unclear. The present study directly demonstrates that cochlear implantation does not interfere with the normal mechanical and physiological function of the cochlea. For the first time, it double-dissociates the electrical responses of hair cells (electrophonic responses) from responses of the auditory nerve fibers (electroneural responses), with separate excited cochlear locations in the same animals. We describe the condition in which these two responses spatially overlap. Finally, the study implicates that using the clinical characteristics of stimulation makes electrophonic responses unlikely in implanted subjects.


Hearing Research | 2016

Somatic memory and gain increase as preconditions for tinnitus: Insights from congenital deafness

Jos J. Eggermont; Andrej Kral

Tinnitus is the conscious perception of sound heard in the absence of physical sound sources internal or external to the body. The characterization of tinnitus by its spectrum reflects the missing frequencies originally represented in the hearing loss, i.e., partially or completely deafferented, region. The tinnitus percept, despite a total hearing loss, may thus be dependent on the persisting existence of a somatic memory for the lost frequencies. Somatic memory in this context is the reference for phantom sensations attributed to missing sensory surfaces or parts thereof. This raises the question whether tinnitus can exist in congenital deafness, were somatic representations have not been formed. We review the development of tonotopic maps in altricial and precocial animals evidence for a lack of tinnitus in congenital deafness and the effects of cochlear implants on the formation of tonotopic maps in the congenitally deaf. The latter relates to the emergence of tinnitus in these subjects. The reviewed material is consistent with the hypothesis that tinnitus requires an established and actively used somatotopic map that leads to a corresponding somatic memory. The absence of such experience explains the absence of tinnitus in congenital bilateral and unilateral deafness.


PLOS ONE | 2013

Dissociated Neurons and Glial Cells Derived from Rat Inferior Colliculi after Digestion with Papain

Odett Kaiser; Pooyan Aliuos; Kirsten Wissel; Thomas Lenarz; Darja Werner; Günter Reuter; Andrej Kral; Athanasia Warnecke

The formation of gliosis around implant electrodes for deep brain stimulation impairs electrode–tissue interaction. Unspecific growth of glial tissue around the electrodes can be hindered by altering physicochemical material properties. However, in vitro screening of neural tissue–material interaction requires an adequate cell culture system. No adequate model for cells dissociated from the inferior colliculus (IC) has been described and was thus the aim of this study. Therefore, IC were isolated from neonatal rats (P3_5) and a dissociated cell culture was established. In screening experiments using four dissociation methods (Neural Tissue Dissociation Kit [NTDK] T, NTDK P; NTDK PN, and a validated protocol for the dissociation of spiral ganglion neurons [SGN]), the optimal media, and seeding densities were identified. Thereafter, a dissociation protocol containing only the proteolytic enzymes of interest (trypsin or papain) was tested. For analysis, cells were fixed and immunolabeled using glial- and neuron-specific antibodies. Adhesion and survival of dissociated neurons and glial cells isolated from the IC were demonstrated in all experimental settings. Hence, preservation of type-specific cytoarchitecture with sufficient neuronal networks only occurred in cultures dissociated with NTDK P, NTDK PN, and fresh prepared papain solution. However, cultures obtained after dissociation with papain, seeded at a density of 2×104 cells/well and cultivated with Neuro Medium for 6 days reliably revealed the highest neuronal yield with excellent cytoarchitecture of neurons and glial cells. The herein described dissociated culture can be utilized as in vitro model to screen interactions between cells of the IC and surface modifications of the electrode.

Collaboration


Dive into the Andrej Kral's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Odett Kaiser

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannes Maier

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Hubka

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge