Andres Cuevas
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andres Cuevas.
Applied Physics Letters | 1996
Ronald A. Sinton; Andres Cuevas
A simple method for implementing the steady‐state photoconductance technique for determining the minority‐carrier lifetime of semiconductor materials is presented. Using a contactless instrument, the photoconductance is measured in a quasi‐steady‐state mode during a long, slow varying light pulse. This permits the use of simple electronics and light sources. Despite its simplicity, the technique is capable of determining very low minority carrier lifetimes and is applicable to a wide range of semiconductor materials. In addition, by analyzing this quasi‐steady‐state photoconductance as a function of incident light intensity, implicit current–voltage characteristic curves can be obtained for noncontacted silicon wafers and solar cell precursors in an expedient manner.
Journal of Applied Physics | 2002
Mark Kerr; Andres Cuevas
A parameterization for band-to-band Auger recombination in silicon at 300 K is proposed. This general parameterization accurately fits the available experimental lifetime data for arbitrary injection level and arbitrary dopant density, for both n-type and p-type dopants. We confirm that Auger recombination is enhanced above the traditional free-particle rate at both low injection and high injection conditions. Further, the rate of enhancement is shown to be less for highly injected intrinsic silicon than for lowly injected doped silicon, consistent with the theory of Coulomb-enhanced Auger recombination. Variations on the parameterization are discussed.
photovoltaic specialists conference | 1996
Ronald A. Sinton; Andres Cuevas; Michael Stuckings
This paper describes a new method for minority-carrier lifetime determination using a contactless photoconductance instrument in a quasi-steady-state mode. Compared to the more common transient photoconductance decay approach, the new technique permits the use of simpler electronics and light sources, yet has the capability to measure lifetimes in the nanosecond to millisecond range. In addition, by analyzing the quasi-steady-state photoconductance as a function of incident light intensity, an implicit I/sub SC/-V/sub OV/ curve can be obtained for noncontacted silicon wafers and solar cell precursors.
Semiconductor Science and Technology | 2001
Jan Schmidt; Mark Kerr; Andres Cuevas
Two different techniques for the electronic surface passivation of silicon solar cells, the plasma-enhanced chemical vapour deposition of silicon nitride (SiN) and the fabrication of thin thermal silicon oxide/plasma SiN stack structures, are investigated. It is demonstrated that, despite their low thermal budget, both techniques are capable of giving an outstanding surface passivation quality on the low-resistivity (∼1 � cm) p-Si base as well as on n + -diffused solar cell emitters with the oxide/nitride stacks showing a much better thermal stability. Both techniques are then applied to fabricate frontand rear-passivated silicon solar cells. Open-circuit voltages in the vicinity of 670 mV are obtained with both passivation techniques on float-zone single-crystalline silicon wafers, demonstrating the outstanding surface passivation quality of the applied passivation schemes on real devices. All-SiN passivated multicrystalline silicon solar cells achieve an open-circuit voltage of 655 mV, which is amongst the highest open-circuit voltages attained on this kind of substrate material. The high open-circuit voltage of the multicrystalline silicon solar cells results not only from the excellent degree of surface passivation but also from the ability of the cell fabrication to maintain a relatively high bulk lifetime (>20 µs) due to the low thermal budget of the surface passivation process.
Applied Physics Letters | 1999
Daniel Macdonald; Andres Cuevas
Abnormally high effective carrier lifetimes have been observed in multicrystalline silicon wafers using both transient and steady-state photoconductance techniques. A simple model based on the presence of trapping centers explains this phenomenon both qualitatively and quantitatively. By fitting this model to experimental data acquired with a quasi-steady-state photoconductance technique, it is possible to determine the trap density, trap energy, and the ratio between the mean-trapping time and mean-escape time. A correlation between trap density and dislocation density in the material has been found.
Journal of Applied Physics | 2001
Mark Kerr; Jan Schmidt; Andres Cuevas; J. H. Bultman
This work was supported by funding from the Australian Research Council. One of the authors ~J.S.! gratefully acknowledges the support of a Feodor Lynen fellowship by the Alexander von Humboldt Foundation of Germany.
Semiconductor Science and Technology | 2002
Mark Kerr; Andres Cuevas
Bulk and surface processes determine the recombination rate in crystalline silicon wafers. In this paper we report effective lifetime measurements for a variety of commercially available float-zone silicon wafers that have been carefully passivated using alnealed silicon oxide. Different substrate resistivities have been explored, including both p-type (boron) and n-type (phosphorus) dopants. Record high effective lifetimes of 29 and 32 ms have been measured for 90 Ω cm n-type and 150 Ω cm p-type silicon wafers, respectively. The dependence of the effective lifetime has been measured for excess carrier densities in the range of 1012–1017 cm−3. These results demonstrate that very low bulk and surface recombination rates can be maintained during high-temperature oxidation (1050 °C) by carefully optimizing the processing conditions.
Journal of Applied Physics | 1999
Jan Schmidt; Andres Cuevas
In order to study the electronic properties of the recombination centers responsible for the light-induced carrier lifetime degradation commonly observed in high-purity boron-doped Czochralski (Cz) silicon, injection-level dependent carrier lifetime measurements are performed on a large number of boron-doped p-type Cz silicon wafers of various resistivities (1–31 Ω cm) prior to and after light degradation. The measurement technique used is the contactless quasi-steady-state photoconductance method, allowing carrier lifetime measurements over a very broad injection range between 1012 and 1017 cm−3. To eliminate all recombination channels not related to the degradation effect, the difference of the inverse lifetimes measured after and before light degradation is evaluated. A detailed analysis of the injection level dependence of the carrier lifetime change using the Shockley–Read–Hall theory shows that the fundamental recombination center created during illumination has an energy level between Ev+0.35 and E...
Journal of Applied Physics | 1996
Andres Cuevas; Paul A. Basore; Gaëlle Giroult‐Matlakowski; Christiane Dubois
New experimental data for the minority‐carrier surface recombination velocity of n‐type silicon, Sp, are reported. The data, obtained from photoconductance decay measurements of the recombination currents corresponding to different phosphorus diffusions, include oxide‐passivated, unpassivated and metal‐coated surfaces. For the passivated case, Sp increases linearly with surface dopant density, ND, for dopant densities higher than 1×1018 cm−3, while for unpassivated (bare) and for metal‐coated silicon Sp remains essentially constant, at about 2×105 cm/s and 3×106 cm/s, respectively. The experiments also allow for a determination of the apparent energy bandgap narrowing as a function of dopant density, ΔEgapp=14 meV [ln(ND/1.4×1017 cm−3)]. These surface recombination velocity and ΔEgapp data form, together with the dependences of minority‐carrier lifetime, τp, and mobility, μp, used in the analysis, a consistent set of parameters that fully characterize highly doped n‐type silicon.
Journal of Applied Physics | 2005
Daniel Macdonald; Andres Cuevas; Atsushi Kinomura; Y. Nakano; Lambert Johan Geerligs
The concentrations of transition-metal impurities in a photovoltaic-grade multicrystalline silicon ingot have been measured by neutron activation analysis. The results show that the concentrations of Fe, Co, and Cu are determined by segregation from the liquid-to-solid phase in the central regions of the ingot. This produces high concentrations near the top of the ingot, which subsequently diffuse back into the ingot during cooling. The extent of this back diffusion is shown to correlate to the diffusivity of the impurities. Near the bottom, the concentrations are higher again due to solid-state diffusion from the crucible after crystallization has occurred. Measurement of the interstitial Fe concentration along the ingot shows that the vast majority of the Fe is precipitated during ingot growth. Further analysis suggests that this precipitation occurs mostly through segregation to extrinsic defects at high temperature rather than through solubility-limit-driven precipitation during ingot cooling.