Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrés D. Maturana is active.

Publication


Featured researches published by Andrés D. Maturana.


Nature | 2012

Crystal structure of the channelrhodopsin light-gated cation channel

Hideaki E. Kato; Feng Zhang; Ofer Yizhar; Charu Ramakrishnan; Tomohiro Nishizawa; Kunio Hirata; Jumpei Ito; Yusuke Aita; Tomoya Tsukazaki; Shigehiko Hayashi; Peter Hegemann; Andrés D. Maturana; Ryuichiro Ishitani; Karl Deisseroth; Osamu Nureki

Channelrhodopsins (ChRs) are light-gated cation channels derived from algae that have shown experimental utility in optogenetics; for example, neurons expressing ChRs can be optically controlled with high temporal precision within systems as complex as freely moving mammals. Although ChRs have been broadly applied to neuroscience research, little is known about the molecular mechanisms by which these unusual and powerful proteins operate. Here we present the crystal structure of a ChR (a C1C2 chimaera between ChR1 and ChR2 from Chlamydomonas reinhardtii) at 2.3 Å resolution. The structure reveals the essential molecular architecture of ChRs, including the retinal-binding pocket and cation conduction pathway. This integration of structural and electrophysiological analyses provides insight into the molecular basis for the remarkable function of ChRs, and paves the way for the precise and principled design of ChR variants with novel properties.


Nature | 2011

Structure and function of a membrane component SecDF that enhances protein export

Tomoya Tsukazaki; Hiroyuki Mori; Yuka Echizen; Ryuichiro Ishitani; Shuya Fukai; Takeshi Tanaka; Anna Perederina; Dmitry G. Vassylyev; Toshiyuki Kohno; Andrés D. Maturana; Koreaki Ito; Osamu Nureki

Protein translocation across the bacterial membrane, mediated by the secretory translocon SecYEG and the SecA ATPase, is enhanced by proton motive force and membrane-integrated SecDF, which associates with SecYEG. The role of SecDF has remained unclear, although it is proposed to function in later stages of translocation as well as in membrane protein biogenesis. Here, we determined the crystal structure of Thermus thermophilus SecDF at 3.3 Å resolution, revealing a pseudo-symmetrical, 12-helix transmembrane domain belonging to the RND superfamily and two major periplasmic domains, P1 and P4. Higher-resolution analysis of the periplasmic domains suggested that P1, which binds an unfolded protein, undergoes functionally important conformational changes. In vitro analyses identified an ATP-independent step of protein translocation that requires both SecDF and proton motive force. Electrophysiological analyses revealed that SecDF conducts protons in a manner dependent on pH and the presence of an unfolded protein, with conserved Asp and Arg residues at the transmembrane interface between SecD and SecF playing essential roles in the movements of protons and preproteins. Therefore, we propose that SecDF functions as a membrane-integrated chaperone, powered by proton motive force, to achieve ATP-independent protein translocation.


Nature | 2013

Structural basis for the drug extrusion mechanism by a MATE multidrug transporter

Yoshiki Tanaka; Christopher J. Hipolito; Andrés D. Maturana; Koichi Ito; Teruo Kuroda; Takashi Higuchi; Takayuki Katoh; Hideaki E. Kato; Motoyuki Hattori; Kaoru Kumazaki; Tomoya Tsukazaki; Ryuichiro Ishitani; Hiroaki Suga; Osamu Nureki

Multidrug and toxic compound extrusion (MATE) family transporters are conserved in the three primary domains of life (Archaea, Bacteria and Eukarya), and export xenobiotics using an electrochemical gradient of H+ or Na+ across the membrane. MATE transporters confer multidrug resistance to bacterial pathogens and cancer cells, thus causing critical reductions in the therapeutic efficacies of antibiotics and anti-cancer drugs, respectively. Therefore, the development of MATE inhibitors has long been awaited in the field of clinical medicine. Here we present the crystal structures of the H+-driven MATE transporter from Pyrococcus furiosus in two distinct apo-form conformations, and in complexes with a derivative of the antibacterial drug norfloxacin and three in vitro selected thioether-macrocyclic peptides, at 2.1–3.0 Å resolutions. The structures, combined with functional analyses, show that the protonation of Asp 41 on the amino (N)-terminal lobe induces the bending of TM1, which in turn collapses the N-lobe cavity, thereby extruding the substrate drug to the extracellular space. Moreover, the macrocyclic peptides bind the central cleft in distinct manners, which correlate with their inhibitory activities. The strongest inhibitory peptide that occupies the N-lobe cavity may pave the way towards the development of efficient inhibitors against MATE transporters.


Nature | 2014

Structural basis of Sec-independent membrane protein insertion by YidC

Kaoru Kumazaki; Shinobu Chiba; Mizuki Takemoto; Arata Furukawa; Ken-ichi Nishiyama; Yasunori Sugano; Takaharu Mori; Naoshi Dohmae; Kunio Hirata; Yoshiko Nakada-Nakura; Andrés D. Maturana; Yoshiki Tanaka; Hiroyuki Mori; Yuji Sugita; Fumio Arisaka; Koreaki Ito; Ryuichiro Ishitani; Tomoya Tsukazaki; Osamu Nureki

Newly synthesized membrane proteins must be accurately inserted into the membrane, folded and assembled for proper functioning. The protein YidC inserts its substrates into the membrane, thereby facilitating membrane protein assembly in bacteria; the homologous proteins Oxa1 and Alb3 have the same function in mitochondria and chloroplasts, respectively. In the bacterial cytoplasmic membrane, YidC functions as an independent insertase and a membrane chaperone in cooperation with the translocon SecYEG. Here we present the crystal structure of YidC from Bacillus halodurans, at 2.4 Å resolution. The structure reveals a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm but closed on the extracellular side. Structure-based in vivo analyses reveal that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. We propose an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove recruits the extracellular regions of substrates into the low-dielectric environment of the membrane.


Nature | 2015

Structural basis for Na + transport mechanism by a light-driven Na + pump

Hideaki E. Kato; Keiichi Inoue; Rei Abe-Yoshizumi; Yoshitaka Kato; Hikaru Ono; Masae Konno; Shoko Hososhima; Toru Ishizuka; Mohammad Razuanul Hoque; Hirofumi Kunitomo; Jumpei Ito; Susumu Yoshizawa; Keitaro Yamashita; Mizuki Takemoto; Tomohiro Nishizawa; Reiya Taniguchi; Kazuhiro Kogure; Andrés D. Maturana; Yuichi Iino; Hiromu Yawo; Ryuichiro Ishitani; Hideki Kandori; Osamu Nureki

Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na+ pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na+ transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na+ transport. Together with the structure-based engineering of the first light-driven K+ pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics.


The EMBO Journal | 2009

Mg2+‐dependent gating of bacterial MgtE channel underlies Mg2+ homeostasis

Motoyuki Hattori; Norihiko Iwase; Noritaka Furuya; Yoshiki Tanaka; Tomoya Tsukazaki; Ryuichiro Ishitani; Michael E. Maguire; Koichi Ito; Andrés D. Maturana; Osamu Nureki

The MgtE family of Mg2+ transporters is ubiquitously distributed in all phylogenetic domains. Recent crystal structures of the full‐length MgtE and of its cytosolic domain in the presence and absence of Mg2+ suggested a Mg2+‐homeostasis mechanism, in which the MgtE cytosolic domain acts as a ‘Mg2+ sensor’ to regulate the gating of the ion‐conducting pore in response to the intracellular Mg2+ concentration. However, complementary functional analyses to confirm the proposed model have been lacking. Moreover, the limited resolution of the full‐length structure precluded an unambiguous characterization of these regulatory divalent‐cation‐binding sites. Here, we showed that MgtE is a highly Mg2+‐selective channel gated by Mg2+ and elucidated the Mg2+‐dependent gating mechanism of MgtE, using X‐ray crystallographic, genetic, biochemical, and electrophysiological analyses. These structural and functional results have clarified the control of Mg2+ homeostasis through cooperative Mg2+ binding to the MgtE cytosolic domain.


Scientific Reports | 2013

An automated system for high-throughput single cell-based breeding

Nobuo Yoshimoto; Akiko Kida; Xu Jie; Masaya Kurokawa; Masumi Iijima; Tomoaki Niimi; Andrés D. Maturana; Itoshi Nikaido; Hiroki R. Ueda; Kenji Tatematsu; Katsuyuki Tanizawa; Akihiko Kondo; Ikuo Fujii; Shun'ichi Kuroda

When establishing the most appropriate cells from the huge numbers of a cell library for practical use of cells in regenerative medicine and production of various biopharmaceuticals, cell heterogeneity often found in an isogenic cell population limits the refinement of clonal cell culture. Here, we demonstrated high-throughput screening of the most suitable cells in a cell library by an automated undisruptive single-cell analysis and isolation system, followed by expansion of isolated single cells. This system enabled establishment of the most suitable cells, such as embryonic stem cells with the highest expression of the pluripotency marker Rex1 and hybridomas with the highest antibody secretion, which could not be achieved by conventional high-throughput cell screening systems (e.g., a fluorescence-activated cell sorter). This single cell-based breeding system may be a powerful tool to analyze stochastic fluctuations and delineate their molecular mechanisms.


Hypertension | 2008

Corticosteroids and Redox Potential Modulate Spontaneous Contractions in Isolated Rat Ventricular Cardiomyocytes

Michel F. Rossier; Sébastien Lenglet; Laurene Marine Vetterli; Magaly Python; Andrés D. Maturana

The mineralocorticoid receptor has been implicated in the development of several cardiac pathologies and could participate in the high incidence of lethal ventricular arrhythmias associated with hyperaldosteronism. We have observed previously that aldosterone markedly increases in vitro the rate of spontaneous contractions of isolated neonate rat ventricular myocytes, a putative proarrhythmogenic condition if occurring in vivo. In the present study, we investigated the effect of glucocorticoids, the involvement of the glucocorticoid receptor, and the modulation of their action by redox agents. Aldosterone and glucocorticoids exerted in vitro a similar, concentration-dependent chronotropic action on cardiomyocytes, which was mediated by both the mineralocorticoid and glucocorticoid receptors. However, the relative contribution of each receptor was different for each agonist, at each concentration. Angiotensin II induced a similar response that was entirely dependent on the activity of the glucocorticoid receptor. Corticosteroid action was modulated by the redox state of the cells, with oxidation increasing the response while reducing conditions partially preventing it. When only the mineralocorticoid receptor was functionally present in the cells, oxidation was necessary to reveal glucocorticoid action, but no obvious competition with mineralocorticoids was observed when both agonists where simultaneously present. In conclusion, corticosteroids exert a strong chronotropic action in ventricular cardiomyocytes, mediated by both the mineralocorticoid and glucocorticoid receptors and modulated by the redox state of the cell. This phenomenon is believed to be because of cell electric remodeling and could contribute in vivo to the deleterious consequence of inappropriate receptor activation, leading to increased susceptibility of patients to arrhythmias.


Science | 2013

Structural Basis for the Counter-Transport Mechanism of a H+/Ca2+ Exchanger

Tomohiro Nishizawa; Satomi Kita; Andrés D. Maturana; Noritaka Furuya; Kunio Hirata; Go Kasuya; Satoshi Ogasawara; Naoshi Dohmae; Takahiro Iwamoto; Ryuichiro Ishitani; Osamu Nureki

Inward-Facing Antiporter Calcium/cation antiporters play a role in regulating the cytosolic calcium concentration by using the electrochemical gradient of other cations to catalyze Ca2+ transport across cell membranes. The structure of a Na+/Ca2+ exchanger in an outward-facing conformation was recently determined. Nishizawa et al. (p. 168, published online 23 May) now report the crystal structure of a H+/Ca2+ exchanger in an inward-facing conformation. Comparison of the structures shows how structural changes create hydrophilic cavities to alternate between the intra- and extracellular sides of the protein, facilitating cation transport. Membrane proteins that exchange calcium ions for cations regulate access by sliding their helices around the ions. Ca2+/cation antiporters catalyze the exchange of Ca2+ with various cations across biological membranes to regulate cytosolic calcium levels. The recently reported structure of a prokaryotic Na+/Ca2+ exchanger (NCX_Mj) revealed its overall architecture in an outward-facing state. Here, we report the crystal structure of a H+/Ca2+ exchanger from Archaeoglobus fulgidus (CAX_Af) in the two representatives of the inward-facing conformation at 2.3 Å resolution. The structures suggested Ca2+ or H+ binds to the cation-binding site mutually exclusively. Structural comparison of CAX_Af with NCX_Mj revealed that the first and sixth transmembrane helices alternately create hydrophilic cavities on the intra- and extracellular sides. The structures and functional analyses provide insight into the mechanism of how the inward- to outward-facing state transition is triggered by the Ca2+ and H+ binding.


Cardiovascular Research | 2010

Splice variants of Enigma homolog, differentially expressed during heart development, promote or prevent hypertrophy

Tomoko Yamazaki; Sébastien Wälchli; Toshitsugu Fujita; Stephan Ryser; Masahiko Hoshijima; Werner Schlegel; Shun'ichi Kuroda; Andrés D. Maturana

AIMS Proteins with a PDZ (for PSD-95, DLG, ZO-1) and one to three LIM (for Lin11, Isl-1, Mec-3) domains are scaffolding sarcomeric and cytoskeletal elements that form structured muscle fibres and provide for the link to intracellular signalling by selectively associating protein kinases, ion channels, and transcription factors with the mechanical stress-strain sensors. Enigma homolog (ENH) is a PDZ-LIM protein with four splice variants: ENH1 with an N-terminal PDZ domain and three C-terminal LIM domains and ENH2, ENH3, and ENH4 without LIM domains. We addressed the functional role of ENH alternative splicing. METHODS AND RESULTS We studied the expression of the four ENH isoforms in the heart during development and in a mouse model of heart hypertrophy. All four isoforms are expressed in the heart but the pattern of expression is clearly different between embryonic, neonatal, and adult stages. ENH1 appears as the embryonic isoform, whereas ENH2, ENH3, and ENH4 are predominant in adult heart. Moreover, alternative splicing of ENH was changed following induction of heart hypertrophy, producing an ENH isoform pattern similar to that of neonatal heart. Next, we tested a possible causal role of ENH1 and ENH4 in the development of cardiac hypertrophy. When overexpressed in rat neonatal cardiomyocytes, ENH1 promoted the expression of hypertrophy markers and increased cell volume, whereas, on the contrary, ENH4 overexpression prevented these changes. CONCLUSION Antagonistic splice variants of ENH may play a central role in the adaptive changes of the link between mechanical stress-sensing and signalling occurring during embryonic development and/or heart hypertrophy.

Collaboration


Dive into the Andrés D. Maturana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge