Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryuichiro Ishitani is active.

Publication


Featured researches published by Ryuichiro Ishitani.


Nature | 2012

Crystal structure of the channelrhodopsin light-gated cation channel

Hideaki E. Kato; Feng Zhang; Ofer Yizhar; Charu Ramakrishnan; Tomohiro Nishizawa; Kunio Hirata; Jumpei Ito; Yusuke Aita; Tomoya Tsukazaki; Shigehiko Hayashi; Peter Hegemann; Andrés D. Maturana; Ryuichiro Ishitani; Karl Deisseroth; Osamu Nureki

Channelrhodopsins (ChRs) are light-gated cation channels derived from algae that have shown experimental utility in optogenetics; for example, neurons expressing ChRs can be optically controlled with high temporal precision within systems as complex as freely moving mammals. Although ChRs have been broadly applied to neuroscience research, little is known about the molecular mechanisms by which these unusual and powerful proteins operate. Here we present the crystal structure of a ChR (a C1C2 chimaera between ChR1 and ChR2 from Chlamydomonas reinhardtii) at 2.3u2009Å resolution. The structure reveals the essential molecular architecture of ChRs, including the retinal-binding pocket and cation conduction pathway. This integration of structural and electrophysiological analyses provides insight into the molecular basis for the remarkable function of ChRs, and paves the way for the precise and principled design of ChR variants with novel properties.


Nature | 2012

Structure and function of Zucchini endoribonuclease in piRNA biogenesis

Hiroshi Nishimasu; Hirotsugu Ishizu; Kuniaki Saito; Satoshi Fukuhara; Miharu K. Kamatani; Luc Bonnefond; Naoki Matsumoto; Tomohiro Nishizawa; Keita Nakanaga; Junken Aoki; Ryuichiro Ishitani; Haruhiko Siomi; Mikiko C. Siomi; Osamu Nureki

PIWI-interacting RNAs (piRNAs) silence transposons to maintain genome integrity in animal germ lines. piRNAs are classified as primary and secondary piRNAs, depending on their biogenesis machinery. Primary piRNAs are processed from long non-coding RNA precursors transcribed from piRNA clusters in the genome through the primary processing pathway. Although the existence of a ribonuclease participating in this pathway has been predicted, its molecular identity remained unknown. Here we show that Zucchini (Zuc), a mitochondrial phospholipase D (PLD) superfamily member, is an endoribonuclease essential for primary piRNA biogenesis. We solved the crystal structure of Drosophila melanogaster Zuc (DmZuc) at 1.75u2009Å resolution. The structure revealed that DmZuc has a positively charged, narrow catalytic groove at the dimer interface, which could accommodate a single-stranded, but not a double-stranded, RNA. DmZuc and the mouse homologue MmZuc (also known as Pld6 and MitoPLD) showed endoribonuclease activity for single-stranded RNAs in vitro. The RNA cleavage products bear a 5′-monophosphate group, a hallmark of mature piRNAs. Mutational analyses revealed that the conserved active-site residues of DmZuc are critical for the ribonuclease activity in vitro, and for piRNA maturation and transposon silencing in vivo. We propose a model for piRNA biogenesis in animal germ lines, in which the Zuc endoribonuclease has a key role in primary piRNA maturation.


Science | 2014

Crystal structure of a claudin provides insight into the architecture of tight junctions.

Hiroshi Suzuki; Tomohiro Nishizawa; Kazutoshi Tani; Yuji Yamazaki; Atsushi Tamura; Ryuichiro Ishitani; Naoshi Dohmae; Sachiko Tsukita; Osamu Nureki; Yoshinori Fujiyoshi

How Tight? In metazoans, sheets of epithelial cells separate different tissue spaces and control their composition. Tight junctions are cell-cell adhesion structures in these cell sheets that form a seal between cells but also provide some selective permeability to ions and small molecules. Claudins are the main constituents of tight junctions, and mutations in claudins cause inherited human disorders involving the disruption of ionic balance. Suzuki et al. (p. 304) report the structure of mouse claudin-15 at 2.4 angstrom resolution, which shows an extracellular β-sheet domain anchored to a transmembrane four-helix bundle. The electrostatic distribution on the claudin surface reveals a negatively charged groove in the extracellular domain that may provide a pathway for positive ions. The structure of a mammalian claudin suggests how extracellular domains may form paracellular ion pathways. Tight junctions are cell-cell adhesion structures in epithelial cell sheets that surround organ compartments in multicellular organisms and regulate the permeation of ions through the intercellular space. Claudins are the major constituents of tight junctions and form strands that mediate cell adhesion and function as paracellular barriers. We report the structure of mammalian claudin-15 at a resolution of 2.4 angstroms. The structure reveals a characteristic β-sheet fold comprising two extracellular segments, which is anchored to a transmembrane four-helix bundle by a consensus motif. Our analyses suggest potential paracellular pathways with distinctive charges on the extracellular surface, providing insight into the molecular basis of ion homeostasis across tight junctions.


Nature | 2013

Structural basis for the drug extrusion mechanism by a MATE multidrug transporter

Yoshiki Tanaka; Christopher J. Hipolito; Andrés D. Maturana; Koichi Ito; Teruo Kuroda; Takashi Higuchi; Takayuki Katoh; Hideaki E. Kato; Motoyuki Hattori; Kaoru Kumazaki; Tomoya Tsukazaki; Ryuichiro Ishitani; Hiroaki Suga; Osamu Nureki

Multidrug and toxic compound extrusion (MATE) family transporters are conserved in the three primary domains of life (Archaea, Bacteria and Eukarya), and export xenobiotics using an electrochemical gradient of H+ or Na+ across the membrane. MATE transporters confer multidrug resistance to bacterial pathogens and cancer cells, thus causing critical reductions in the therapeutic efficacies of antibiotics and anti-cancer drugs, respectively. Therefore, the development of MATE inhibitors has long been awaited in the field of clinical medicine. Here we present the crystal structures of the H+-driven MATE transporter from Pyrococcus furiosus in two distinct apo-form conformations, and in complexes with a derivative of the antibacterial drug norfloxacin and three in vitro selected thioether-macrocyclic peptides, at 2.1–3.0u2009Å resolutions. The structures, combined with functional analyses, show that the protonation of Aspu200941 on the amino (N)-terminal lobe induces the bending of TM1, which in turn collapses the N-lobe cavity, thereby extruding the substrate drug to the extracellular space. Moreover, the macrocyclic peptides bind the central cleft in distinct manners, which correlate with their inhibitory activities. The strongest inhibitory peptide that occupies the N-lobe cavity may pave the way towards the development of efficient inhibitors against MATE transporters.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT

Shintaro Doki; Hideaki E. Kato; Nicolae Solcan; Masayo Iwaki; Michio Koyama; Motoyuki Hattori; Norihiko Iwase; Tomoya Tsukazaki; Yuji Sugita; Hideki Kandori; Simon Newstead; Ryuichiro Ishitani; Osamu Nureki

Proton-dependent oligopeptide transporters (POTs) are major facilitator superfamily (MFS) proteins that mediate the uptake of peptides and peptide-like molecules, using the inwardly directed H+ gradient across the membrane. The human POT family transporter peptide transporter 1 is present in the brush border membrane of the small intestine and is involved in the uptake of nutrient peptides and drug molecules such as β-lactam antibiotics. Although previous studies have provided insight into the overall structure of the POT family transporters, the question of how transport is coupled to both peptide and H+ binding remains unanswered. Here we report the high-resolution crystal structures of a bacterial POT family transporter, including its complex with a dipeptide analog, alafosfalin. These structures revealed the key mechanistic and functional roles for a conserved glutamate residue (Glu310) in the peptide binding site. Integrated structural, biochemical, and computational analyses suggested a mechanism for H+-coupled peptide symport in which protonated Glu310 first binds the carboxyl group of the peptide substrate. The deprotonation of Glu310 in the inward open state triggers the release of the bound peptide toward the intracellular space and salt bridge formation between Glu310 and Arg43 to induce the state transition to the occluded conformation.


Nature | 2014

Structural basis of Sec-independent membrane protein insertion by YidC

Kaoru Kumazaki; Shinobu Chiba; Mizuki Takemoto; Arata Furukawa; Ken-ichi Nishiyama; Yasunori Sugano; Takaharu Mori; Naoshi Dohmae; Kunio Hirata; Yoshiko Nakada-Nakura; Andrés D. Maturana; Yoshiki Tanaka; Hiroyuki Mori; Yuji Sugita; Fumio Arisaka; Koreaki Ito; Ryuichiro Ishitani; Tomoya Tsukazaki; Osamu Nureki

Newly synthesized membrane proteins must be accurately inserted into the membrane, folded and assembled for proper functioning. The protein YidC inserts its substrates into the membrane, thereby facilitating membrane protein assembly in bacteria; the homologous proteins Oxa1 and Alb3 have the same function in mitochondria and chloroplasts, respectively. In the bacterial cytoplasmic membrane, YidC functions as an independent insertase and a membrane chaperone in cooperation with the translocon SecYEG. Here we present the crystal structure of YidC from Bacillus halodurans, at 2.4 Å resolution. The structure reveals a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm but closed on the extracellular side. Structure-based in vivo analyses reveal that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. We propose an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove recruits the extracellular regions of substrates into the low-dielectric environment of the membrane.


Science | 2013

Structural Basis for the Counter-Transport Mechanism of a H+/Ca2+ Exchanger

Tomohiro Nishizawa; Satomi Kita; Andrés D. Maturana; Noritaka Furuya; Kunio Hirata; Go Kasuya; Satoshi Ogasawara; Naoshi Dohmae; Takahiro Iwamoto; Ryuichiro Ishitani; Osamu Nureki

Inward-Facing Antiporter Calcium/cation antiporters play a role in regulating the cytosolic calcium concentration by using the electrochemical gradient of other cations to catalyze Ca2+ transport across cell membranes. The structure of a Na+/Ca2+ exchanger in an outward-facing conformation was recently determined. Nishizawa et al. (p. 168, published online 23 May) now report the crystal structure of a H+/Ca2+ exchanger in an inward-facing conformation. Comparison of the structures shows how structural changes create hydrophilic cavities to alternate between the intra- and extracellular sides of the protein, facilitating cation transport. Membrane proteins that exchange calcium ions for cations regulate access by sliding their helices around the ions. Ca2+/cation antiporters catalyze the exchange of Ca2+ with various cations across biological membranes to regulate cytosolic calcium levels. The recently reported structure of a prokaryotic Na+/Ca2+ exchanger (NCX_Mj) revealed its overall architecture in an outward-facing state. Here, we report the crystal structure of a H+/Ca2+ exchanger from Archaeoglobus fulgidus (CAX_Af) in the two representatives of the inward-facing conformation at 2.3 Å resolution. The structures suggested Ca2+ or H+ binds to the cation-binding site mutually exclusively. Structural comparison of CAX_Af with NCX_Mj revealed that the first and sixth transmembrane helices alternately create hydrophilic cavities on the intra- and extracellular sides. The structures and functional analyses provide insight into the mechanism of how the inward- to outward-facing state transition is triggered by the Ca2+ and H+ binding.


Nature Communications | 2015

Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin

Reiya Taniguchi; Hideaki E. Kato; Josep Font; Chandrika N. Deshpande; Miki Wada; Koichi Ito; Ryuichiro Ishitani; Mika Jormakka; Osamu Nureki

In vertebrates, the iron exporter ferroportin releases Fe2+ from cells into plasma, thereby maintaining iron homeostasis. The transport activity of ferroportin is suppressed by the peptide hormone hepcidin, which exhibits upregulated expression in chronic inflammation, causing iron-restrictive anaemia. However, due to the lack of structural information about ferroportin, the mechanisms of its iron transport and hepcidin-mediated regulation remain largely elusive. Here we report the crystal structures of a putative bacterial homologue of ferroportin, BbFPN, in both the outward- and inward-facing states. Despite undetectable sequence similarity, BbFPN adopts the major facilitator superfamily fold. A comparison of the two structures reveals that BbFPN undergoes an intra-domain conformational rearrangement during the transport cycle. We identify a substrate metal-binding site, based on structural and mutational analyses. Furthermore, the BbFPN structures suggest that a predicted hepcidin-binding site of ferroportin is located within its central cavity. Thus, BbFPN may be a valuable structural model for iron homeostasis regulation by ferroportin.


Cell Reports | 2016

Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.

Go Kasuya; Yuichiro Fujiwara; Mizuki Takemoto; Naoshi Dohmae; Yoshiko Nakada-Nakura; Ryuichiro Ishitani; Motoyuki Hattori; Osamu Nureki

P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors.


Nature | 2016

Structural basis for amino acid export by DMT superfamily transporter YddG

Hirotoshi Tsuchiya; Shintaro Doki; Mizuki Takemoto; Tatsuya Ikuta; Takashi Higuchi; Keita Fukui; Yoshihiro Usuda; Eri Tabuchi; Satoru Nagatoishi; Kouhei Tsumoto; Tomohiro Nishizawa; Koichi Ito; Naoshi Dohmae; Ryuichiro Ishitani; Osamu Nureki

The drug/metabolite transporter (DMT) superfamily is a large group of membrane transporters ubiquitously found in eukaryotes, bacteria and archaea, and includes exporters for a remarkably wide range of substrates, such as toxic compounds and metabolites. YddG is a bacterial DMT protein that expels aromatic amino acids and exogenous toxic compounds, thereby contributing to cellular homeostasis. Here we present structural and functional analyses of YddG. Using liposome-based analyses, we show that Escherichia coli and Starkeya novella YddG export various amino acids. The crystal structure of S. novella YddG at 2.4u2009Å resolution reveals a new membrane transporter topology, with ten transmembrane segments in an outward-facing state. The overall structure is basket-shaped, with a large substrate-binding cavity at the centre of the molecule, and is composed of inverted structural repeats related by two-fold pseudo-symmetry. On the basis of this intramolecular symmetry, we propose a structural model for the inward-facing state and a mechanism of the conformational change for substrate transport, which we confirmed by biochemical analyses. These findings provide a structural basis for the mechanism of transport of DMT superfamily proteins.

Collaboration


Dive into the Ryuichiro Ishitani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoya Tsukazaki

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiki Tanaka

Nara Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge