Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrés López-Sepulcre is active.

Publication


Featured researches published by Andrés López-Sepulcre.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Local adaptation in Trinidadian guppies alters ecosystem processes

Ronald D. Bassar; Michael C. Marshall; Andrés López-Sepulcre; Eugenia Zandonà; Sonya K. Auer; Joseph Travis; Catherine M. Pringle; Alexander S. Flecker; Steven A. Thomas; Douglas F. Fraser; David N. Reznick

Theory suggests evolutionary change can significantly influence and act in tandem with ecological forces via ecological-evolutionary feedbacks. This theory assumes that significant evolutionary change occurs over ecologically relevant timescales and that phenotypes have differential effects on the environment. Here we test the hypothesis that local adaptation causes ecosystem structure and function to diverge. We demonstrate that populations of Trinidadian guppies (Poecilia reticulata), characterized by differences in phenotypic and population-level traits, differ in their impact on ecosystem properties. We report results from a replicated, common garden mesocosm experiment and show that differences between guppy phenotypes result in the divergence of ecosystem structure (algal, invertebrate, and detrital standing stocks) and function (gross primary productivity, leaf decomposition rates, and nutrient flux). These phenotypic effects are further modified by effects of guppy density. We evaluated the generality of these effects by replicating the experiment using guppies derived from two independent origins of the phenotype. Finally, we tested the ability of multiple guppy traits to explain observed differences in the mesocosms. Our findings demonstrate that evolution can significantly affect both ecosystem structure and function. The ecosystem differences reported here are consistent with patterns observed across natural streams and argue that guppies play a significant role in shaping these ecosystems.


The American Naturalist | 2006

From Hawks and Doves to Self‐Consistent Games of Territorial Behavior

Hanna Kokko; Andrés López-Sepulcre; Lesley J. Morrell

Explaining the “prior‐residence effect” (automatic owner status of individuals who arrived first in an area) was one of the very first applications of game theory in animal behavior. These models, however, predict paradoxical solutions where intruders always win, with no satisfactory explanation for the absence of such cases in nature. We propose a solution based on new developments in evolutionary game theory. A self‐consistent model with feedbacks between individual behavior and population dynamics produces qualitatively different frequency‐dependent selection on intruders (floaters) than on territory owners. Starting with an ancestral population with no respect for ownership, the most likely evolutionary end point is complete or partial respect. Conventional rules of conflict resolution thus can rely on “uncorrelated asymmetries” without differences in resource‐holding power or territory value, although they will be strengthened by such differences. We also review the empirical literature on animal contests, testing whether asymmetries in resource‐holding power are required to explain the observations. Despite much empirical effort, results remain inconclusive, because experiments are often unable to distinguish between the motivation of individuals to fight and the behavioral outcome of a contest. To help arrive at conclusive answers, we suggest a standardized empirical approach to quantify prior‐residence effects.


The American Naturalist | 2005

Territorial defense, territory size, and population regulation.

Andrés López-Sepulcre; Hanna Kokko

The carrying capacity of an environment is determined partly by how individuals compete over the available resources. To territorial animals, space is an important resource, leading to conflict over its use. We build a model where the carrying capacity for an organism in a given environment results from the evolution of territorial defense effort and the consequent space use. The same evolutionary process can yield two completely different modes of population regulation. Density dependence arises through expanding and shrinking territories if fecundity is low, breeding success increases gradually with territory size, and/or defense is cheap. By contrast, when fecundity is high, breeding success sharply saturates with territory size, and/or defense is costly, we predict fixed territory sizes and regulation by floaters. These “surplus” individuals form a buffer against population fluctuations. Yet floaters can also harm breeder performance, and by comparing population growth of a territorial population to a nonterritorial (and individually suboptimal) alternative, we can quantify the harmful effect of evolutionary conflict on population performance. Territoriality has often been found to increase population stability, but this may come at a cost of reduced equilibrium densities.


The American Naturalist | 2012

Direct and Indirect Ecosystem Effects of Evolutionary Adaptation in the Trinidadian Guppy (Poecilia reticulata)

Ronald D. Bassar; Régis Ferrière; Andrés López-Sepulcre; Michael C. Marshall; Joseph Travis; Catherine M. Pringle; David N. Reznick

Ecological and evolutionary processes may interact on the same timescale, but we are just beginning to understand how. Several studies have examined the net effects of adaptive evolution on ecosystem properties. However, we do not know whether these effects are confined to direct interactions or whether they propagate further through indirect ecological pathways. Even less well understood is how the combination of direct and indirect ecological effects of the phenotype promotes or inhibits evolutionary change. We coupled mesocosm experiments and ecosystem modeling to evaluate the ecological effects of local adaptation in Trinidadian guppies (Poecilia reticulata). The experiments show that guppies adapted to life with and without predators alter the ecosystem directly through differences in diet. The ecosystem model reveals that the small total indirect effect of the phenotype observed in the experiments is likely a combination of several large indirect effects that act in opposing directions. The model further suggests that these indirect effects can reverse the direction of selection that direct effects alone exert back on phenotypic variation. We conclude that phenotypic divergence can have major effects deep in the web of indirect ecological interactions and that even small total indirect effects can radically change the dynamics of adaptation.


The American Naturalist | 2013

Experimental Evidence for Density-Dependent Regulation and Selection on Trinidadian Guppy Life Histories

Ronald D. Bassar; Andrés López-Sepulcre; David N. Reznick; Joseph Travis

Recent study of feedbacks between ecological and evolutionary processes has renewed interest in population regulation and density-dependent selection because they represent black-box descriptions of these feedbacks. The roles of population regulation and density-dependent selection in life-history evolution have received a significant amount of theoretical attention, but there are few empirical examples demonstrating their importance. We address this challenge in natural populations of the Trinidadian guppy (Poecilia reticulata) that differ in their predation regimes. First, we tested whether natural populations of guppies are regulated by density dependence and quantified in which phases of the life cycle the effects of density are important. We found that guppies from low-predation (LP) environments are tightly regulated and that the density-dependent responses disproportionately affected some size classes. Second, we tested whether there are differences in density-dependent selection between guppies from LP or high-predation (HP) environments. We found that the fitness of HP guppies is more sensitive to the depressant effects of density than the fitness of LP guppies. Finally, we used an evolutionary invasion analysis to show that, depending on the effect of density on survival of the HP phenotype, this greater sensitivity of the HP phenotype to density can partially explain the evolution of the LP phenotype. We discuss the relevance of these findings to the study of feedbacks between ecology and evolution.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Beyond lifetime reproductive success: the posthumous reproductive dynamics of male Trinidadian guppies

Andrés López-Sepulcre; Swanne P. Gordon; Ian G. Paterson; Paul Bentzen; David N. Reznick

In semelparous populations, dormant germ banks (e.g. seeds) have been proposed as important in maintaining genotypes that are adaptive at different times in fluctuating environments. Such hidden storage of genetic diversity need not be exclusive to dormant banks. Genotype diversity may be preserved in many iteroparous animals through sperm-storage mechanisms in females. This allows males to reproduce posthumously and increase the effective sizes of seemingly female-biased populations. Although long-term sperm storage has been demonstrated in many organisms, the understanding of its importance in the wild is very poor. We here show the prevalence of male posthumous reproduction in wild Trinidadian guppies, through the combination of mark–recapture and pedigree analyses of a multigenerational individual-based dataset. A significant proportion of the reproductive population consisted of dead males, who could conceive up to 10 months after death (the maximum allowed by the length of the dataset), which is more than twice the estimated generation time. Demographic analysis shows that the fecundity of dead males can play an important role in population growth and selection.


Evolution | 2014

REPLICATED ORIGIN OF FEMALE‐BIASED ADULT SEX RATIO IN INTRODUCED POPULATIONS OF THE TRINIDADIAN GUPPY (POECILIA RETICULATA)

Jeffrey D. Arendt; David N. Reznick; Andrés López-Sepulcre

There are many theoretical and empirical studies explaining variation in offspring sex ratio but relatively few that explain variation in adult sex ratio. Adult sex ratios are important because biased sex ratios can be a driver of sexual selection and will reduce effective population size, affecting population persistence and shapes how populations respond to natural selection. Previous work on guppies (Poecilia reticulata) gives mixed results, usually showing a female‐biased adult sex ratio. However, a detailed analysis showed that this bias varied dramatically throughout a year and with no consistent sex bias. We used a mark‐recapture approach to examine the origin and consistency of female‐biased sex ratio in four replicated introductions. We show that female‐biased sex ratio arises predictably and is a consequence of higher male mortality and longer female life spans with little effect of offspring sex ratio. Inconsistencies with previous studies are likely due to sampling methods and sampling design, which should be less of an issue with mark‐recapture techniques. Together with other long‐term mark‐recapture studies, our study suggests that bias in offspring sex ratio rarely contributes to adult sex ratio in vertebrates. Rather, sex differences in adult survival rates and longevity determine vertebrate adult sex ratio.


Advances in Ecological Research | 2014

Do Eco-Evo Feedbacks Help Us Understand Nature? Answers From Studies of the Trinidadian Guppy

Joseph Travis; David N. Reznick; Ronald D. Bassar; Andrés López-Sepulcre; Régis Ferrière; Tim Coulson

The bulk of evolutionary ecology implicitly assumes that ecology shapes evolution, rather than vice versa, but there is increasing interest in the possibility of a two-way interaction. Dynamic feedbacks between ecological and evolutionary processes (eco-evo feedbacks) have long been recognized in the theoretical literature, and the observation of rapid evolution has since inspired empiricists to explore the consequences of these feedbacks. Laboratory studies prove that short-term evolutionary change can significantly alter ecological dynamics, particularly in pair-wise interactions. We know far less about whether these reciprocal dynamics are important in more complex natural systems. Here, we outline our approach to that question, focusing on the Trinidadian guppy and the stream ecosystems it inhabits. We summarize results from several types of studies: comparative demography in two types of communities, experiments in mesocosms, common garden laboratory experiments and replicated introduction experiments. The latter were designed as perturbations to the natural steady state that allow us to follow the joint ecological and evolutionary dynamics of guppies and their ecosystem. In each approach, we replicated experiments across multiple independent origins of guppy population types and found that eco–evo feedbacks play major roles in guppy evolution. There are three possible sources for these feedbacks, all of which have some support in our data, which will form the focus of future research efforts.


Journal of Evolutionary Biology | 2007

Species-level selection reduces selfishness through competitive exclusion.

Daniel J. Rankin; Andrés López-Sepulcre; Kevin R. Foster; Hanna Kokko

Adaptation does not necessarily lead to traits which are optimal for the population. This is because selection is often the strongest at the individual or gene level. The evolution of selfishness can lead to a ‘tragedy of the commons’, where traits such as aggression or social cheating reduce population size and may lead to extinction. This suggests that species‐level selection will result whenever species differ in the incentive to be selfish. We explore this idea in a simple model that combines individual‐level selection with ecology in two interacting species. Our model is not influenced by kin or trait‐group selection. We find that individual selection in combination with competitive exclusion greatly increases the likelihood that selfish species go extinct. A simple example of this would be a vertebrate species that invests heavily into squabbles over breeding sites, which is then excluded by a species that invests more into direct reproduction. A multispecies simulation shows that these extinctions result in communities containing species that are much less selfish. Our results suggest that species‐level selection and community dynamics play an important role in regulating the intensity of conflicts in natural populations.


Journal of Animal Ecology | 2009

Reproductive conflict delays the recovery of an endangered social species

Andrés López-Sepulcre; Ken Norris; Hanna Kokko

1. Evolutionary theory predicts that individuals, in order to increase their relative fitness, can evolve behaviours that are detrimental for the group or population. This mismatch is particularly visible in social organisms. Despite its potential to affect the population dynamics of social animals, this principle has not yet been applied to real-life conservation. 2. Social group structure has been argued to stabilize population dynamics due to the buffering effects of nonreproducing subordinates. However, competition for breeding positions in such species can also interfere with the reproduction of breeding pairs. 3. Seychelles magpie robins, Copsychus sechellarum, live in social groups where subordinate individuals do not breed. Analysis of long-term individual-based data and short-term behavioural observations show that subordinates increase the territorial takeover frequency of established breeders. Such takeovers delay offspring production and decrease territory productivity. 4. Individual-based simulations of the Seychelles magpie robin population parameterized with the long-term data show that this process has significantly postponed the recovery of the species from the Critically Endangered status. 5. Social conflict thus can extend the period of high extinction risk, which we show to have population consequences that should be taken into account in management programmes. This is the first quantitative assessment of the effects of social conflict on conservation.

Collaboration


Dive into the Andrés López-Sepulcre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanna Kokko

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Travis

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven A. Thomas

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge