Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonya K. Auer is active.

Publication


Featured researches published by Sonya K. Auer.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Local adaptation in Trinidadian guppies alters ecosystem processes

Ronald D. Bassar; Michael C. Marshall; Andrés López-Sepulcre; Eugenia Zandonà; Sonya K. Auer; Joseph Travis; Catherine M. Pringle; Alexander S. Flecker; Steven A. Thomas; Douglas F. Fraser; David N. Reznick

Theory suggests evolutionary change can significantly influence and act in tandem with ecological forces via ecological-evolutionary feedbacks. This theory assumes that significant evolutionary change occurs over ecologically relevant timescales and that phenotypes have differential effects on the environment. Here we test the hypothesis that local adaptation causes ecosystem structure and function to diverge. We demonstrate that populations of Trinidadian guppies (Poecilia reticulata), characterized by differences in phenotypic and population-level traits, differ in their impact on ecosystem properties. We report results from a replicated, common garden mesocosm experiment and show that differences between guppy phenotypes result in the divergence of ecosystem structure (algal, invertebrate, and detrital standing stocks) and function (gross primary productivity, leaf decomposition rates, and nutrient flux). These phenotypic effects are further modified by effects of guppy density. We evaluated the generality of these effects by replicating the experiment using guppies derived from two independent origins of the phenotype. Finally, we tested the ability of multiple guppy traits to explain observed differences in the mesocosms. Our findings demonstrate that evolution can significantly affect both ecosystem structure and function. The ecosystem differences reported here are consistent with patterns observed across natural streams and argue that guppies play a significant role in shaping these ecosystems.


Evolution | 2007

GEOGRAPHIC VARIATION IN AVIAN INCUBATION PERIODS AND PARENTAL INFLUENCES ON EMBRYONIC TEMPERATURE

Thomas E. Martin; Sonya K. Auer; Ronald D. Bassar; Alina M. Niklison; Penn Lloyd

Abstract Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized.


The Condor | 2007

Breeding Biology of Passerines in a Subtropical Montane Forest in Northwestern Argentina

Sonya K. Auer; Ronald D. Bassar; Joseph J. Fontaine; Thomas E. Martin

Abstract The breeding ecology of south temperate bird species is less widely known than that of north temperate species, yet because they comprise a large portion of the worlds avian diversity, knowledge of their breeding ecology can contribute to a more comprehensive understanding of the geographic diversity of avian reproductive traits and life history strategies. We provide the first detailed examination of the reproductive strategies of 18 forest passerines of subtropical, northwestern Argentina. Mean clutch sizes were smaller and egg mass was greater than for north temperate birds, but differed among species and nest types, with cavity-nesters having larger clutches than species with open-cup and enclosed nests. Across all species, the average breeding season duration was 50 days; thus, the common perception that southern species have smaller clutch sizes because of longer breeding seasons is not supported in this community. Daily nest predation rates were influenced by nest type, cavity nests suffering the least from predation, as found in north temperate systems. Only females incubated eggs in all but one species, whereas both parents fed and cared for nestlings in all species. Mean nest attentiveness was low compared to north temperate passerines. Mean hourly nestling feeding rates differed among species and were negatively related to nest predation risk. In short, coexisting species in this subtropical forest varied in their life history strategies, in part correlated with variation in nest predation risk, but also differing from north temperate species.


The American Naturalist | 2011

A Model for Optimal Offspring Size in Fish, Including Live-Bearing and Parental Effects

Christian Jørgensen; Sonya K. Auer; David N. Reznick

Since Smith and Fretwell’s seminal article in 1974 on the optimal offspring size, most theory has assumed a trade-off between offspring number and offspring fitness, where larger offspring have better survival or fitness, but with diminishing returns. In this article, we use two ubiquitous biological mechanisms to derive the shape of this trade-off: the offspring’s growth rate combined with its size-dependent mortality (predation). For a large parameter region, we obtain the same sigmoid relationship between offspring size and offspring survival as Smith and Fretwell, but we also identify parameter regions where the optimal offspring size is as small or as large as possible. With increasing growth rate, the optimal offspring size is smaller. We then integrate our model with strategies of parental care. Egg guarding that reduces egg mortality favors smaller or larger offspring, depending on how mortality scales with size. For live-bearers, the survival of offspring to birth is a function of maternal survival; if the mother’s survival increases with her size, then the model predicts that larger mothers should produce larger offspring. When using parameters for Trinidadian guppies Poecilia reticulata, differences in both growth and size-dependent predation are required to predict observed differences in offspring size between wild populations from high- and low-predation environments.


Proceedings of the Royal Society B: Biological Sciences | 2015

Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance

Karine Salin; Sonya K. Auer; Colin Selman; Neil B. Metcalfe

It is often assumed that an animals metabolic rate can be estimated through measuring the whole-organism oxygen consumption rate. However, oxygen consumption alone is unlikely to be a sufficient marker of energy metabolism in many situations. This is due to the inherent variability in the link between oxidation and phosphorylation; that is, the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by mitochondria (P/O ratio). In this article, we describe how the P/O ratio can vary within and among individuals, and in response to a number of environmental parameters, including diet and temperature. As the P/O ratio affects the efficiency of cellular energy production, its variability may have significant consequences for animal performance, such as growth rate and reproductive output. We explore the adaptive significance of such variability and hypothesize that while a reduction in the P/O ratio is energetically costly, it may be associated with advantages in terms of somatic maintenance through reduced production of reactive oxygen species. Finally, we discuss how considering variation in mitochondrial efficiency, together with whole-organism oxygen consumption, can permit a better understanding of the relationship between energy metabolism and life history for studies in evolutionary ecology.


The American Naturalist | 2010

Phenotypic Plasticity in Adult Life‐History Strategies Compensates for a Poor Start in Life in Trinidadian Guppies (Poecilia reticulata)

Sonya K. Auer

Low food availability during early growth and development can have long‐term negative consequences for reproductive success. Phenotypic plasticity in adult life‐history decisions may help to mitigate these potential costs, yet adult life‐history responses to juvenile food conditions remain largely unexplored. I used a food‐manipulation experiment with female Trinidadian guppies (Poecilia reticulata) to examine age‐related changes in adult life‐history responses to early food conditions, whether these responses varied across different adult food conditions, and how these responses affected overall reproductive success. Guppy females reared on low food as juveniles matured at a later age, at a smaller size, and with less energy reserves than females reared on high food as juveniles. In response to this setback, they changed their investment in growth, reproduction, and fat storage throughout the adult stage such that they were able to catch up in body size, increase their reproductive output, and restore their energy reserves to levels comparable to those of females reared on high food as juveniles. The net effect was that adult female guppies did not merely mitigate but surprisingly were able to fully compensate for the potential long‐term negative effects of poor juvenile food conditions on reproductive success.


Functional Ecology | 2015

The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability

Sonya K. Auer; Karine Salin; Agata M. Rudolf; Graeme J. Anderson; Neil B. Metcalfe

Summary Metabolic rates can vary as much as threefold among individuals of the same size and age in a population, but why such variation persists is unclear given that they determine the energetic cost of living. Relationships between standard metabolic rate (SMR), growth and survival can vary with environmental conditions, suggesting that the fitness consequences of a given metabolic phenotype may be context-dependent. Less attention has focused on the link between absolute aerobic scope (AS, the difference between standard and maximum metabolic rate) and fitness under different environmental conditions, despite the importance of aerobic scope to an organisms total energetic capacity. We examined the links between individual variation in both SMR and AS and somatic growth rates of brown trout (Salmo trutta) under different levels of food availability. Standard metabolic rate and AS were uncorrelated across individuals. However, SMR and AS not only had interactive effects on growth, but these interactions depended on food level: at ad libitum food levels, AS had a positive effect on growth whose magnitude depended on SMR; at intermediate food levels, AS and SMR had interactive effects on growth, but at the low food level, there was no effect of either AS or SMR on growth. As a result, there was no metabolic phenotype that performed best or worst across all food levels. These results demonstrate the importance of aerobic scope in explaining somatic growth rates and support the hypothesis that links between individual variation in metabolism and fitness are context-dependent. The larger metabolic phenotype and the environmental context in which performance is evaluated both need to be considered in order to better understand the link between metabolic rates and fitness and thereby the persistence of individual variation in metabolic rates.


Biology Letters | 2015

Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo

Karine Salin; Sonya K. Auer; Agata M. Rudolf; Graeme J. Anderson; Andrew G. Cairns; William Mullen; Richard C. Hartley; Colin Selman; Neil B. Metcalfe

There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2.


Journal of Animal Ecology | 2015

Flexibility in metabolic rate confers a growth advantage under changing food availability

Sonya K. Auer; Karine Salin; Agata M. Rudolf; Graeme J. Anderson; Neil B. Metcalfe

Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species’ resilience in the face of global change.


Biology Letters | 2015

Aerobic scope explains individual variation in feeding capacity.

Sonya K. Auer; Karine Salin; Graeme J. Anderson; Neil B. Metcalfe

Links between metabolism and components of fitness such as growth, reproduction and survival can depend on food availability. A high standard metabolic rate (SMR; baseline energy expenditure) or aerobic scope (AS; the difference between an individuals maximum and SMR) is often beneficial when food is abundant or easily accessible but can be less important or even disadvantageous when food levels decline. While the mechanisms underlying these context-dependent associations are not well understood, they suggest that individuals with a higher SMR or AS are better able to take advantage of high food abundance. Here we show that juvenile brown trout (Salmo trutta) with a higher AS were able to consume more food per day relative to individuals with a lower AS. These results help explain why a high aerobic capacity can improve performance measures such as growth rate at high but not low levels of food availability.

Collaboration


Dive into the Sonya K. Auer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge