Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andres M. Salazar is active.

Publication


Featured researches published by Andres M. Salazar.


Journal of Clinical Oncology | 2011

Induction of CD8+ T-Cell Responses Against Novel Glioma–Associated Antigen Peptides and Clinical Activity by Vaccinations With α-Type 1 Polarized Dendritic Cells and Polyinosinic-Polycytidylic Acid Stabilized by Lysine and Carboxymethylcellulose in Patients With Recurrent Malignant Glioma

Hideho Okada; Pawel Kalinski; Ryo Ueda; Aki Hoji; Gary Kohanbash; Teresa E. Donegan; Arlan Mintz; Johnathan A. Engh; David L. Bartlett; Charles K. Brown; Herbert J. Zeh; Matthew P. Holtzman; Todd A. Reinhart; Theresa L. Whiteside; Lisa H. Butterfield; Ronald L. Hamilton; Douglas M. Potter; Ian F. Pollack; Andres M. Salazar; Frank S. Lieberman

PURPOSE A phase I/II trial was performed to evaluate the safety and immunogenicity of a novel vaccination with α-type 1 polarized dendritic cells (αDC1) loaded with synthetic peptides for glioma-associated antigen (GAA) epitopes and administration of polyinosinic-polycytidylic acid [poly(I:C)] stabilized by lysine and carboxymethylcellulose (poly-ICLC) in HLA-A2(+) patients with recurrent malignant gliomas. GAAs for these peptides are EphA2, interleukin (IL)-13 receptor-α2, YKL-40, and gp100. PATIENTS AND METHODS Twenty-two patients (13 with glioblastoma multiforme [GBM], five with anaplastic astrocytoma [AA], three with anaplastic oligodendroglioma [AO], and one with anaplastic oligoastrocytoma [AOA]) received at least one vaccination, and 19 patients received at least four vaccinations at two αDC1 dose levels (1 × or 3 × 10(7)/dose) at 2-week intervals intranodally. Patients also received twice weekly intramuscular injections of 20 μg/kg poly-ICLC. Patients who demonstrated positive radiologic response or stable disease without major adverse events were allowed to receive booster vaccines. T-lymphocyte responses against GAA epitopes were assessed by enzyme-linked immunosorbent spot and HLA-tetramer assays. RESULTS The regimen was well-tolerated. The first four vaccines induced positive immune responses against at least one of the vaccination-targeted GAAs in peripheral blood mononuclear cells in 58% of patients. Peripheral blood samples demonstrated significant upregulation of type 1 cytokines and chemokines, including interferon-α and CXCL10. Nine (four GBM, two AA, two AO, and one AOA) achieved progression-free status lasting at least 12 months. One patient with recurrent GBM demonstrated sustained complete response. IL-12 production levels by αDC1 positively correlated with time to progression. CONCLUSION These data support safety, immunogenicity, and preliminary clinical activity of poly-ICLC-boosted αDC1-based vaccines.


Journal of Translational Medicine | 2007

Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models

Xinmei Zhu; Fumihiko Nishimura; Kotaro Sasaki; Mitsugu Fujita; Jill E. Dusak; Junichi Eguchi; Wendy Fellows-Mayle; Walter J. Storkus; Paul R. Walker; Andres M. Salazar; Hideho Okada

BackgroundToll-like receptor (TLR)3 ligands serve as natural inducers of pro-inflammatory cytokines capable of promoting Type-1 adaptive immunity, and TLR3 is abundantly expressed by cells within the central nervous system (CNS). To improve the efficacy of vaccine strategies directed against CNS tumors, we evaluated whether administration of a TLR3 ligand, polyinosinic-polycytidylic (poly-IC) stabilized with poly-lysine and carboxymethylcellulose (poly-ICLC) would enhance the anti-CNS tumor effectiveness of tumor peptide-based vaccinations.MethodsC57BL/6 mice bearing syngeneic CNS GL261 glioma or M05 melanoma received subcutaneous (s.c.) vaccinations with synthetic peptides encoding CTL epitopes- mEphA2 (671–679), hgp100 (25–33) and mTRP-2 (180–188) for GL261, or ovalbumin (OVA: 257–264) for M05. The mice also received intramuscular (i.m.) injections with poly-ICLC.ResultsThe combination of subcutaneous (s.c.) peptide-based vaccination and i.m. poly-ICLC administration promoted systemic induction of antigen (Ag)-specific Type-1 CTLs expressing very late activation antigen (VLA)-4, which confers efficient CNS-tumor homing of vaccine-induced CTLs based on experiments with monoclonal antibody (mAb)-mediated blockade of VLA-4. In addition, the combination treatment allowed expression of IFN-γ by CNS tumor-infiltrating CTLs, and improved the survival of tumor bearing mice in the absence of detectable autoimmunity.ConclusionThese data suggest that poly-ICLC, which has been previously evaluated in clinical trials, can be effectively combined with tumor Ag-specific vaccine strategies, thereby providing a greater index of therapeutic efficacy.


Cancer Immunology, Immunotherapy | 2010

Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-α and IFN-γ dependent manners

Xinmei Zhu; Beth Fallert-Junecko; Mitsugu Fujita; Ryo Ueda; Gary Kohanbash; Edward R. Kastenhuber; Heather A. McDonald; Yan Liu; Pawel Kalinski; Todd A. Reinhart; Andres M. Salazar; Hideho Okada

Stimulation of double-stranded (ds)RNA receptors can increase the effectiveness of cancer vaccines, but the underlying mechanisms are not completely elucidated. In this study, we sought to determine critical roles of host IFN-α and IFN-γ pathways in the enhanced therapeutic efficacy mediated by peptide vaccines and polyinosinic-polycytidylic acid [poly(I:C)] stabilized by lysine and carboxymethylcellulose (poly-ICLC) in the murine central nervous system (CNS) GL261 glioma. C57BL/6-background wild type (WT), IFN-α receptor-1 (IFN-αR1)−/− or IFN-γ−/− mice bearing syngeneic CNS GL261 glioma received subcutaneous (s.c.) vaccinations with synthetic peptides encoding CTL epitopes with or without intramuscular (i.m.) injections of poly-ICLC. The combinational treatment induced a robust transcription of CXCL10 in the glioma site. Blockade of CXCL10 with a specific monoclonal antibody (mAb) abrogated the efficient CNS homing of antigen-specific type-1 CTL (Tc1). Both IFN-αR−/− and IFN-γ−/− hosts failed to up-regulate the CXCL10 mRNA and recruit Tc1 cells to the tumor site, indicating non-redundant roles of type-1 and type-2 IFNs in the effects of poly-ICLC-assisted vaccines. The efficient trafficking of Tc1 also required Tc1-derived IFN-γ. Our data point to critical roles of the host-IFN-α and IFN-γ pathways in the modulation of CNS glioma microenvironment, and the therapeutic effectiveness of poly-ICLC-assisted glioma vaccines.


Clinical Cancer Research | 2015

Induction of Robust Type-I CD8+ T-cell Responses in WHO Grade 2 Low-Grade Glioma Patients Receiving Peptide-Based Vaccines in Combination with Poly-ICLC

Hideho Okada; Lisa H. Butterfield; Ronald L. Hamilton; Aki Hoji; Masashi Sakaki; Brian Ahn; Gary Kohanbash; Jan Drappatz; Johnathan A. Engh; Nduka Amankulor; Mark O. Lively; Michael D. Chan; Andres M. Salazar; Edward G. Shaw; Douglas M. Potter; Frank S. Lieberman

Purpose: WHO grade 2 low-grade gliomas (LGG) with high risk factors for recurrence are mostly lethal despite current treatments. We conducted a phase I study to evaluate the safety and immunogenicity of subcutaneous vaccinations with synthetic peptides for glioma-associated antigen (GAA) epitopes in HLA-A2+ adults with high-risk LGGs in the following three cohorts: (i) patients without prior progression, chemotherapy, or radiotherapy (RT); (ii) patients without prior progression or chemotherapy but with prior RT; and (iii) recurrent patients. Experimental Design: GAAs were IL13Rα2, EphA2, WT1, and Survivin. Synthetic peptides were emulsified in Montanide-ISA-51 and given every 3 weeks for eight courses with intramuscular injections of poly-ICLC, followed by q12 week booster vaccines. Results: Cohorts 1, 2, and 3 enrolled 12, 1, and 10 patients, respectively. No regimen-limiting toxicity was encountered except for one case with grade 3 fever, fatigue, and mood disturbance (cohort 1). ELISPOT assays demonstrated robust IFNγ responses against at least three of the four GAA epitopes in 10 and 4 cases of cohorts 1 and 3, respectively. Cohort 1 patients demonstrated significantly higher IFNγ responses than cohort 3 patients. Median progression-free survival (PFS) periods since the first vaccine are 17 months in cohort 1 (range, 10–47+) and 12 months in cohort 3 (range, 3–41+). The only patient with large astrocytoma in cohort 2 has been progression-free for more than 67 months since diagnosis. Conclusion: The current regimen is well tolerated and induces robust GAA-specific responses in WHO grade 2 glioma patients. These results warrant further evaluations of this approach. Clin Cancer Res; 21(2); 286–94. ©2014 AACR.


Cancer immunology research | 2014

Therapeutic In Situ Autovaccination against Solid Cancers with Intratumoral Poly-ICLC: Case Report, Hypothesis, and Clinical Trial

Andres M. Salazar; Rodrigo B. Erlich; Alexander Mark; Nina Bhardwaj; Ronald B. Herberman

Salazar and colleagues describe an ongoing trial of sequential intratumoral and intramuscular poly-ICLC vaccination, partly based on results in a pilot volunteer patient with advanced rhabdomyosarcoma; the authors postulate conversion of tumor into a personalized vaccine, activating innate and adaptive immunity. Pathogen-associated molecular patterns (PAMP) are stand-alone innate and adaptive immunomodulators and critical vaccine components. We present a strategy of sequential intratumoral (i.t.) and intramuscular (i.m.) injections of the stabilized dsRNA viral mimic and PAMP, polyinosinic–polycytidylic acid-polylysine-carboxymethylcellulose (poly-ICLC, Hiltonol; Oncovir). We report the first treated patient, a young man with an exceptionally advanced facial embryonal rhabdomyosarcoma with extension to the brain. After treatment, the patient showed tumor inflammation consistent with immunotherapy, followed by gradual, marked tumor regression, with extended survival. Sequential i.t. and i.m. poly-ICLC injections mimicking a viral infection can induce an effective, in situ, personalized systemic therapeutic “autovaccination” against tumor antigens of a patient. We postulate a three-step immunomodulatory process: (i) innate-immune local tumor killing induced by i.t. poly-ICLC; (ii) activation of dendritic cells with Th1 cell– and CTL–weighted priming against the released tumor antigens; and (iii) i.m. poly-ICLC maintenance of the systemic antitumor immune response via chemokine induction, facilitation of CTL killing through the induction of costimulators such as OX40, inflammasome activation, and increase in the T-effector/Treg ratio. These results support the use of certain simple and inexpensive i.t. PAMPs to favorably stimulate effective immunity against solid cancers. A phase II clinical trial testing the hypothesis presented has begun accrual (clinicaltrials.gov, NCT01984892). Cancer Immunol Res; 2(8); 720–4. ©2014 AACR.


Cancer Research | 2015

Novel Cell-Penetrating Peptide-Based Vaccine Induces Robust CD4+ and CD8+ T Cell–Mediated Antitumor Immunity

Madiha Derouazi; Wilma Di Berardino-Besson; Elodie Belnoue; Sabine Hoepner; Romy Walther; Mahdia Benkhoucha; Patrick Teta; Yannick Dufour; Céline Yacoub Maroun; Andres M. Salazar; Denis Martinvalet; Pierre-Yves Dietrich; Paul R. Walker

Vaccines that can coordinately induce multi-epitope T cell-mediated immunity, T helper functions, and immunologic memory may offer effective tools for cancer immunotherapy. Here, we report the development of a new class of recombinant protein cancer vaccines that deliver different CD8(+) and CD4(+) T-cell epitopes presented by MHC class I and class II alleles, respectively. In these vaccines, the recombinant protein is fused with Z12, a novel cell-penetrating peptide that promotes efficient protein loading into the antigen-processing machinery of dendritic cells. Z12 elicited an integrated and multi-epitopic immune response with persistent effector T cells. Therapy with Z12-formulated vaccines prolonged survival in three robust tumor models, with the longest survival in an orthotopic model of aggressive brain cancer. Analysis of the tumor sites showed antigen-specific T-cell accumulation with favorable modulation of the balance of the immune infiltrate. Taken together, the results offered a preclinical proof of concept for the use of Z12-formulated vaccines as a versatile platform for the development of effective cancer vaccines.


Cancer Immunology, Immunotherapy | 2017

Designing therapeutic cancer vaccines by mimicking viral infections

Hussein Sultan; Valentyna I. Fesenkova; Diane Addis; Aaron E. Fan; Takumi Kumai; Juan Wu; Andres M. Salazar; Esteban Celis

The design of efficacious and cost-effective therapeutic vaccines against cancer remains both a research priority and a challenge. For more than a decade, our laboratory has been involved in the development of synthetic peptide-based anti-cancer therapeutic vaccines. We first dedicated our efforts in the identification and validation of peptide epitopes for both CD8 and CD4 T cells from tumor-associated antigens (TAAs). Because of suboptimal immune responses and lack of therapeutic benefit of peptide vaccines containing these epitopes, we have focused our recent efforts in optimizing peptide vaccinations in mouse tumor models using numerous TAA epitopes. In this focused research review, we describe how after taking lessons from the immune system’s way of dealing with acute viral infections, we have designed peptide vaccination strategies capable of generating very high numbers of therapeutically effective CD8 T cells. We also discuss some of the remaining challenges to translate these findings into the clinical setting.


Molecular Therapy | 2016

Enhancing Antitumor Immune Responses by Optimized Combinations of Cell-penetrating Peptide-based Vaccines and Adjuvants

Elodie Belnoue; Wilma Di Berardino-Besson; Hubert Gaertner; Susanna Carboni; Isabelle Dunand-Sauthier; Fabrice Cerini; Else-Marit Suso-Inderberg; Sébastien Wälchli; Stéphane König; Andres M. Salazar; Oliver Hartley; Pierre-Yves Dietrich; Paul R. Walker; Madiha Derouazi

Cell penetrating peptides (CPPs) from the protein ZEBRA are promising candidates to exploit in therapeutic cancer vaccines, since they can transport antigenic cargos into dendritic cells and induce tumor-specific T cells. Employing CPPs for a given cancer indication will require engineering to include relevant tumor-associated epitopes, administration with an appropriate adjuvant, and testing for antitumor immunity. We assessed the importance of structural characteristics, efficiency of in vitro transduction of target cells, and choice of adjuvant in inducing the two key elements in antitumor immunity, CD4 and CD8 T cells, as well as control of tumor growth in vivo. Structural characteristics associated with CPP function varied according to CPP truncations and cargo epitope composition, and correlated with in vitro transduction efficiency. However, subsequent in vivo capacity to induce CD4 and CD8 T cells was not always predicted by in vitro results. We determined that the critical parameter for in vivo efficacy using aggressive mouse tumor models was the choice of adjuvant. Optimal pairing of a particular ZEBRA-CPP sequence and antigenic cargo together with adjuvant induced potent antitumor immunity. Our results highlight the irreplaceable role of in vivo testing of novel vaccine constructs together with adjuvants to select combinations for further development.


Journal for ImmunoTherapy of Cancer | 2014

Converting tumors into vaccine manufacturing factories: DC recruitment, activation and clinical responses with a flt3L-primed in situ vaccine for low-grade lymphoma [nct01976585]

Nina Bhardwaj; Miriam Merad; Seunghee Kim-Schulze; Beth Crowley; Thomas P. Davis; Tibor Keler; Andres M. Salazar; Joshua Brody

Meeting abstracts Lymphomas are the 5th most common cancer in the U.S. and the most prevalent amongst these, low-grade B cell lymphomas are incurable with standard therapy. Previously, we completed three trials combining low-dose radiotherapy (XRT) with intratumoral administration of a TLR9 agonist


Journal of Hepatocellular Carcinoma | 2017

A Phase I trial using local regional treatment, nonlethal irradiation, intratumoral and systemic polyinosinic-polycytidylic acid polylysine carboxymethylcellulose to treat liver cancer: in search of the abscopal effect

Andrew N. de la Torre; Sohail Contractor; Ismael Castaneda; Charles S Cathcart; Dolly Razdan; David Klyde; P. Kisza; Sharon Gonzales; Andres M. Salazar

Purpose To determine the safety of an approach to immunologically enhance local treatment of hepatocellular cancer (HCC) by combining nonlethal radiation, local regional therapy with intratumoral injection, and systemic administration of a potent Toll-like receptor (TLR) immune adjuvant. Methods Patients with HCC not eligible for liver transplant or surgery were subject to: 1) 3 fractions of 2-Gy focal nonlethal radiation to increase tumor antigen expression, 2) intra-/peri-tumoral (IT) injection of the TLR3 agonist, polyinosinic-polycytidylic acid polylysine carboxymethylcellulose (poly-ICLC), to induce an immunologic “danger” response in the tumor microenvironment with local regional therapy, and 3) systemic boosting of immunity with intramuscular poly-ICLC. Primary end points were safety and tolerability; secondary end points were progression-free survival (PFS) and overall survival (OS) at 6 months, 1 year, and 2 years. Results Eighteen patients with HCC not eligible for surgery or liver transplant were treated. Aside from 1 embolization-related severe adverse event, all events were ≤grade II. PFS was 66% at 6 months, 39% at 12 months, and 28% at 24 months. Overall 1-year survival was 69%, and 2-year survival 38%. In patients <60 years old, 2-year survival was 62.5% vs. 11.1% in patients aged >60 years (P<0.05). Several patients had prolonged PFS and OS. Conclusion Intra-tumoral injection of the TLR3 agonist poly-ICLC in patients with HCC is safe and tolerable when combined with local nonlethal radiation and local regional treatment. Further work is in progress to evaluate if this approach improves survival compared to local regional treatment alone and characterize changes in anticancer immunity.

Collaboration


Dive into the Andres M. Salazar's collaboration.

Top Co-Authors

Avatar

Hideho Okada

University of California

View shared research outputs
Top Co-Authors

Avatar

Nina Bhardwaj

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aki Hoji

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge