Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew A. Wereszczak is active.

Publication


Featured researches published by Andrew A. Wereszczak.


Archive | 2011

Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System

Timothy A. Burress; Steven L Campbell; Chester Coomer; Curtis W. Ayers; Andrew A. Wereszczak; Joseph P. Cunningham; Laura D. Marlino; Larry Eugene Seiber; Hua-Tay Lin

Subsystems of the 2010 Toyota Prius hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies Program (VTP) not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.


Philosophical Magazine | 2009

Transport and mechanical properties of Yb-filled skutterudites

James R. Salvador; Jihui Yang; Xun Shi; Hsin Wang; Andrew A. Wereszczak; Huijun Kong; Ctirad Uher

A series of Yb-filled skutterudites were produced and powder samples consolidated using spark plasma sintering (SPS). The effect of different heating cycles on the resulting transport properties of the consolidated samples was explored. Specifically, the effect of sample uniformity on the electrical and thermal transport properties was explored. In addition to the optimal Yb-filling fraction, other factors, such as heating profiles and sintering conditions, were found to play a pivotal role in the performance of these materials. Large quantities of Yb-filled skutterudite material can be generated with high purity and uniformity. Resonant ultrasound spectroscopy was used to determine the elastic modulus and Poissons ratio. Fracture strength was measured for 12 specimens and, taken with information obtained from resonant ultrasound spectroscopy and from thermal expansion and thermal transport characteristics, the thermal shock resistance parameter was evaluated. These parameters will be important for the engineering of thermoelectric modules based on skutterudite materials.


Physical Chemistry Chemical Physics | 2014

Conversion efficiency of skutterudite-based thermoelectric modules

James R. Salvador; Jung Y. Cho; Zuxin Ye; Joshua E. Moczygemba; Alan J. Thompson; Jeffrey W. Sharp; Jan D. Koenig; Ryan Maloney; Travis Thompson; Jeff Sakamoto; Hsin Wang; Andrew A. Wereszczak

Presently, the only commercially available power generating thermoelectric (TE) modules are based on bismuth telluride (Bi2Te3) alloys and are limited to a hot side temperature of 250 °C due to the melting point of the solder interconnects and/or generally poor power generation performance above this point. For the purposes of demonstrating a TE generator or TEG with higher temperature capability, we selected skutterudite based materials to carry forward with module fabrication because these materials have adequate TE performance and are mechanically robust. We have previously reported the electrical power output for a 32 couple skutterudite TE module, a module that is type identical to ones used in a high temperature capable TEG prototype. The purpose of this previous work was to establish the expected power output of the modules as a function of varying hot and cold side temperatures. Recent upgrades to the TE module measurement system built at the Fraunhofer Institute for Physical Measurement Techniques allow for the assessment of not only the power output, as previously described, but also the thermal to electrical energy conversion efficiency. Here we report the power output and conversion efficiency of a 32 couple, high temperature skutterudite module at varying applied loading pressures and with different interface materials between the module and the heat source and sink of the test system. We demonstrate a 7% conversion efficiency at the module level when a temperature difference of 460 °C is established. Extrapolated values indicate that 7.5% is achievable when proper thermal interfaces and loading pressures are used.


Journal of The European Ceramic Society | 1999

Asymmetric tensile and compressive creep deformation of hot-isostatically-pressed Y2O3-doped -Si3N4

Andrew A. Wereszczak; Mattison K. Ferber; T. P. Kirkland; Amy S Barnes; Edward L. Frome; Mamballykalathil N. Menon

Abstract The uniaxial tensile and compressive creep rates of an yttria-containing hot-isostatically-pressed silicon nitride were examined at several temperatures between 1316 and 1399°C and found to have different stress dependencies. Minimum creep rates were always faster in tension than compression for an equal magnitude of stress. An empirical model was formulated which represented the minimum creep rate as a function of temperature for both tensile and compressive stresses. The model also depicted the asymmetric creep deformation using exponential and linear dependence on tensile and compressive stress, respectively. Unlike other models which represent either tensile or compressive creep deformation as a respective function of tensile or compressive stress, the model in the present study predicted creep deformation rate for both tensile and compressive stresses without conditional or a priori knowledge of the sign of stress. A statistical weight function was introduced to improve the correlation of the model’s regressed fit to the experimental data. Post-testing TEM microstructural analysis revealed that differences in the amount of tensile- and compressive-stress-induced cavitation accounted for the creep strain asymmetry between them, and that cavitation initiated in tensile and compressively crept specimens for magnitudes of creep strain in excess of 0·1%.


Journal of Materials Science | 2002

Dimensional changes and creep of silica core ceramics used in investment casting of superalloys

Andrew A. Wereszczak; Kristin Breder; M. K. Ferber; T. P. Kirkland; E. A. Payzant; Claudia J. Rawn; E. Krug; C. L. Larocco; R. A. Pietras; M. Karakus

Dimensional changes and creep deformation of a silica/zircon (74%/24%, respectively) and a high silica (93% silica and 3% zircon) ceramic were characterized and compared. All specimens were tested with a thermal profile that consisted of a 300°C/h heating rate to 1475 or 1525°C, followed by a one-hour isothermal hold (where each specimen was compressively crept under a static stress of 2.07, 4.14, or 6.21 MPa). The specimens were cooled at a rate of 900°C/h under stress. Dimensional changes were interpreted from apparent thermal expansion behavior during heating as well as before-and-after dimensional measurements. The silica/zircon ceramic generally exhibited less total contraction than the high silica ceramic for a specific test condition even though it crept faster at all stresses and temperatures during the one-hour isothermal/isostress segment. This indicates that the total contraction for both was dominated by reinitiated sintering and subsequent cristobalite formation that occurred during the heating segment. Minimum creep rate during the one-hour isothermal/isostress segment was examined as a function of stress and temperature for both ceramics using a power-law creep model. Creep-rate stress exponents (n) and activation energies (Q) were equivalent (within 95% confidence) for both ceramics showing that their different contents of zircon (3 vs. 24%) did not affect them. Lastly, n ≈ 1.3–1.4 and Q ≈ 170 kJ/mol indicate that diffusion-assisted crystallization of cristobalite, combined with power-law sintering owing to the high concentration of porosity (28–30%) was likely the rate-limiting mechanism in the creep deformation for both ceramics.


Journal of Applied Physics | 2004

Multiple cracking of brittle coatings on strained substrates

C. H. Hsueh; Andrew A. Wereszczak

Multiple cracking of well-adhered brittle coatings on strained substrates has been commonly observed in many coating applications. Here we found two significant uses for this cracking phenomenon. First, if crack density as a function of applied strain is measured at one coating thickness, it can be used to predict those for other coating thicknesses. Second, if the residual stress in the coating is unknown, the crack density versus applied strain relation can be used to deduce this residual stress. The key to our method is to obtain a master curve by normalizing the crack density and the applied strain, respectively, by the coating thickness and the critical applied strain in initiating cracking.


Archive | 2009

Evaluation of the 2008 Lexus LS 600H Hybrid Synergy Drive System

Timothy A. Burress; Chester Coomer; Steven L Campbell; Andrew A. Wereszczak; Joseph P. Cunningham; Laura D. Marlino; Larry Eugene Seiber; Hua-Tay Lin

Subsystems of the 2008 Lexus 600h hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies program not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.


Archive | 2006

Rolling Contact Fatigue of Ceramics

Andrew A. Wereszczak; Wei Wang; Y Wang; M. Hadfield; W. Kanematsu; T. P. Kirkland; Osama M. Jadaan

High hardness, low coefficient of thermal expansion and high temperature capability are properties also suited to rolling element materials. Silicon nitride (Si{sub 3}N{sub 4}) has been found to have a good combination of properties suitable for these applications. However, much is still not known about rolling contact fatigue (RCF) behavior, which is fundamental information to assess the lifetime of the material. Additionally, there are several test techniques that are employed internationally whose measured RCF performances are often irreconcilable. Due to the lack of such information, some concern for the reliability of ceramic bearings still remains. This report surveys a variety of topics pertaining to RCF. Surface defects (cracks) in Si{sub 3}N{sub 4} and their propagation during RCF are discussed. Five methods to measure RCF are then briefly overviewed. Spalling, delamination, and rolling contact wear are discussed. Lastly, methods to destructively (e.g., C-sphere flexure strength testing) and non-destructively identify potential RCF-limiting flaws in Si{sub 3}N{sub 4} balls are described.


Journal of Applied Physics | 2010

Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

Hong Wang; Thomas A. Cooper; Hua-Tay Lin; Andrew A. Wereszczak

Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/−0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in ...


Journal of Applied Physics | 2009

Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

Hong Wang; Andrew A. Wereszczak; Hua-Tay Lin

An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results...

Collaboration


Dive into the Andrew A. Wereszczak's collaboration.

Top Co-Authors

Avatar

T. P. Kirkland

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Osama M. Jadaan

University of Wisconsin–Platteville

View shared research outputs
Top Co-Authors

Avatar

Hua-Tay Lin

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mattison K. Ferber

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hong Wang

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. K. Ferber

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hsin Wang

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin T Strong

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kristin Breder

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge