Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Bassett is active.

Publication


Featured researches published by Andrew Bassett.


Cell Reports | 2013

Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System

Andrew Bassett; Charlotte Tibbit; Chris P. Ponting; Ji-Long Liu

Summary Here, we present a simple and highly efficient method for generating and detecting mutations of any gene in Drosophila melanogaster through the use of the CRISPR/Cas9 system (clustered regularly interspaced palindromic repeats/CRISPR-associated). We show that injection of RNA into the Drosophila embryo can induce highly efficient mutagenesis of desired target genes in up to 88% of injected flies. These mutations can be transmitted through the germline to make stable lines. Our system provides at least a 10-fold improvement in efficiency over previously published reports, enabling wider application of this technique. We also describe a simple and highly sensitive method of detecting mutations in the target gene by high-resolution melt analysis and discuss how the new technology enables the study of gene function.


Plant Journal | 2009

Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii

Attila Molnar; Andrew Bassett; Eva C. Thuenemann; Frank Schwach; Shantanu Karkare; Stephan Ossowski; Detlef Weigel; David C. Baulcombe

MicroRNAs (miRNAs) are small RNAs, 21 to 22 nucleotides long, with important regulatory roles. They are processed from longer RNA molecules with imperfectly matched foldback regions and they function in modulating the stability and translation of mRNA. Recently, we and others have demonstrated that the unicellular alga Chlamydomonas reinhardtii, like diverse multicellular organisms, contains miRNAs. These RNAs resemble the miRNAs of land plants in that they direct site-specific cleavage of target mRNA with miRNA-complementary motifs and, presumably, act as regulatory molecules in growth and development. Utilizing these findings we have developed a novel artificial miRNA system based on ligation of DNA oligonucleotides that can be used for specific high-throughput gene silencing in green algae.


eLife | 2014

Considerations when investigating lncRNA function in vivo

Andrew Bassett; Asifa Akhtar; Denise P. Barlow; Adrian Bird; Neil Brockdorff; Denis Duboule; Anne Ephrussi; Anne C. Ferguson-Smith; Thomas R. Gingeras; Wilfried Haerty; Douglas R. Higgs; Eric A. Miska; Chris P. Ponting

Although a small number of the vast array of animal long non-coding RNAs (lncRNAs) have known effects on cellular processes examined in vitro, the extent of their contributions to normal cell processes throughout development, differentiation and disease for the most part remains less clear. Phenotypes arising from deletion of an entire genomic locus cannot be unequivocally attributed either to the loss of the lncRNA per se or to the associated loss of other overlapping DNA regulatory elements. The distinction between cis- or trans-effects is also often problematic. We discuss the advantages and challenges associated with the current techniques for studying the in vivo function of lncRNAs in the light of different models of lncRNA molecular mechanism, and reflect on the design of experiments to mutate lncRNA loci. These considerations should assist in the further investigation of these transcriptional products of the genome. DOI: http://dx.doi.org/10.7554/eLife.03058.001


Genome Biology and Evolution | 2012

Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome.

Robert S. Young; Ana C. Marques; Charlotte Tibbit; Wilfried Haerty; Andrew Bassett; Ji-Long Liu; Chris P. Ponting

The functional repertoire of long intergenic noncoding RNA (lincRNA) molecules has begun to be elucidated in mammals. Determining the biological relevance and potential gene regulatory mechanisms of these enigmatic molecules would be expedited in a more tractable model organism, such as Drosophila melanogaster. To this end, we defined a set of 1,119 putative lincRNA genes in D. melanogaster using modENCODE whole transcriptome (RNA-seq) data. A large majority (1.1 of 1.3 Mb; 85%) of these bases were not previously reported by modENCODE as being transcribed. Significant selective constraint on the sequences of these loci predicts that virtually all have sustained functionality across the Drosophila clade. We observe biases in lincRNA genomic locations and expression profiles that are consistent with some of these lincRNAs being involved in the regulation of neighboring protein-coding genes with developmental functions. We identify lincRNAs that may be important in the developing nervous system and in male-specific organs, such as the testes. LincRNA loci were also identified whose positions, relative to nearby protein-coding loci, are equivalent between D. melanogaster and mouse. This study predicts that the genomes of not only vertebrates, such as mammals, but also an invertebrate (fruit fly) harbor large numbers of lincRNA loci. Our findings now permit exploitation of Drosophila genetics for the investigation of lincRNA mechanisms, including lincRNAs with potential functional analogues in mammals.


Journal of Genetics and Genomics | 2014

CRISPR/Cas9 and genome editing in Drosophila.

Andrew Bassett; Ji-Long Liu

Recent advances in our ability to design DNA binding factors with specificity for desired sequences have resulted in a revolution in genetic engineering, enabling directed changes to the genome to be made relatively easily. Traditional techniques for generating genetic mutations in most organisms have relied on selection from large pools of randomly induced mutations for those of particular interest, or time-consuming gene targeting by homologous recombination. Drosophila melanogaster has always been at the forefront of genetic analysis, and application of these new genome editing techniques to this organism will revolutionise our approach to performing analysis of gene function in the future. We discuss the recent techniques that apply the CRISPR/Cas9 system to Drosophila, highlight potential uses for this technology and speculate upon the future of genome engineering in this model organism.


The EMBO Journal | 2012

Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs.

Padubidri V. Shivaprasad; Ruth M. Dunn; Bruno Santos; Andrew Bassett; David C. Baulcombe

Hybrid organisms may fail to develop, be sterile or they may be more vigorous than either of the parents. Examples of hybrid vigour or hybrid necrosis in the F1 are often not inherited stably in subsequent generations if they are associated with overdominance. There can also be transgressive phenotypes that are inherited stably in these later generations, but the underlying mechanisms are not well understood. Here we have investigated the possibility that stable transgressive phenotypes in the progeny of crosses between cultivated tomato (Solanum lycopersicum cv. M82) and a wild relative (Solanum pennellii, accession LA716) are associated with micro or small interfering(si) RNAs. We identified loci from which these small(s)RNAs were more abundant in hybrids than in either parent and we show that accumulation of such transgressive sRNAs correlated with suppression of the corresponding target genes. In one instance this effect was associated with hypermethylation of the corresponding genomic DNA. Our results illustrate a potential role of transgressive sRNAs in plant breeding and in natural evolution with wild plants.


Current Biology | 2011

Mobile 24 nt Small RNAs Direct Transcriptional Gene Silencing in the Root Meristems of Arabidopsis thaliana

Charles W. Melnyk; Attila Molnar; Andrew Bassett; David C. Baulcombe

RNA silencing in flowering plants generates a signal that moves between cells and through the phloem [1, 2]. Nucleotide sequence specificity of the signal is conferred by 21, 22, and 24 nucleotide (nt) sRNAs that are generated by Dicer-like (DCL) proteins [3]. In the recipient cells these sRNAs bind to Argonaute (AGO) effectors of silencing and the 21 nt sRNAs mediate posttranscriptional regulation (PTGS) via mRNA cleavage [4] whereas the 24 nt sRNAs are associated with RNA-dependent DNA methylation (RdDM) [5] that may underlie transcriptional gene silencing (TGS). Intriguingly, genes involved in TGS are required for graft-transmissible gene silencing associated with PTGS [6]. However, some of the same genes were also required for spread of a PTGS silencing signal out of the veins of Arabidopsis [7], and grafting tests failed to demonstrate direct transmission of TGS signals [8-10]. It seemed likely, therefore, that mobile silencing is associated only with PTGS. To address this possibility, we grafted TGS-inducing wild-type Arabidopsis and a mutant that is compromised in 24 nt sRNA production onto a wild-type reporter line. The 21-24 nt sRNAs from the TGS construct were transmitted across a graft union but only the 24 nt sRNAs directed RdDM and TGS of a transgene promoter in meristematic cells. These data extend the significance of an RNA silencing signal to embrace epigenetics and transcriptional gene silencing and support the hypothesis that these signals transmit information to meristematic cells where they initiate persistent epigenetic changes that may influence growth, development, and heritable phenotypes.


Biology Open | 2014

Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9

Andrew Bassett; Charlotte Tibbit; Chris P. Ponting; Ji-Long Liu

Summary We have applied the CRISPR/Cas9 system to Drosophila S2 cells to generate targeted genetic mutations in more than 85% of alleles. By targeting a constitutive exon of the AGO1 gene, we demonstrate homozygous mutation in up to 82% of cells, thereby allowing the study of genetic knockouts in a Drosophila cell line for the first time. We have shown that homologous gene targeting is possible at 1–4% efficiency using this system, allowing for the construction of defined insertions and deletions. We demonstrate that a 1 kb homology arm length is optimal for integration by homologous gene targeting, and demonstrate its efficacy by tagging the endogenous AGO1 protein. This technology enables controlled genetic manipulation in Drosophila cell lines, and its simplicity offers the opportunity to study cellular phenotypes genome-wide.


Methods | 2014

CRISPR/Cas9 mediated genome engineering in Drosophila

Andrew Bassett; Ji-Long Liu

Genome engineering has revolutionised genetic analysis in many organisms. Here we describe a simple and efficient technique to generate and detect novel mutations in desired target genes in Drosophila melanogaster. We target double strand breaks to specific sites within the genome by injecting mRNA encoding the Cas9 endonuclease and in vitro transcribed synthetic guide RNA into Drosophila embryos. The small insertion and deletion mutations that result from inefficient non-homologous end joining at this site are detected by high resolution melt analysis of whole flies and individual wings, allowing stable lines to be made within 1 month.


EMBO Reports | 2007

A variable topology for the 30-nm chromatin fibre

Chenyi Wu; Andrew Bassett; Andrew Travers

The structure of the 30‐nm chromatin fibre is an important determinant of the regulation of eukaryotic transcription. A fundamental issue is whether the stacking of nucleosomes in this fibre is organized as a one‐start or two‐start helix. We argue that all recent experimental data are compatible with a two‐start helix and propose that the topology of the fibre, but not the mode of stacking the nucleosomes, is dependent on the length of the linker DNA. This arrangement conserves nucleosome stacking and thus the external morphology of the fibre, and also ensures that the fibre adopts the highest available packing density.

Collaboration


Dive into the Andrew Bassett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-Long Liu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Andrew Travers

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Bird

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge