Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah Cooper is active.

Publication


Featured researches published by Sarah Cooper.


Cell | 2014

Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation.

Neil P. Blackledge; Anca M. Farcas; Takashi Kondo; Hamish W. King; Joanna F. McGouran; Lars L.P. Hanssen; Shinsuke Ito; Sarah Cooper; Kaori Kondo; Tomoyuki Ishikura; Hannah K. Long; Thomas W. Sheahan; Neil Brockdorff; Benedikt M. Kessler; Haruhiko Koseki; Robert J. Klose

Summary Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.


Cell Reports | 2014

Targeting Polycomb to Pericentric Heterochromatin in Embryonic Stem Cells Reveals a Role for H2AK119u1 in PRC2 Recruitment

Sarah Cooper; Martin Dienstbier; R Hassan; Lothar Schermelleh; Jafar Sharif; Neil P. Blackledge; V De Marco; Sarah Elderkin; Haruhiko Koseki; Robert J. Klose; Andreas Heger; Neil Brockdorff

Summary The mechanisms by which the major Polycomb group (PcG) complexes PRC1 and PRC2 are recruited to target sites in vertebrate cells are not well understood. Building on recent studies that determined a reciprocal relationship between DNA methylation and Polycomb activity, we demonstrate that, in methylation-deficient embryonic stem cells (ESCs), CpG density combined with antagonistic effects of H3K9me3 and H3K36me3 redirects PcG complexes to pericentric heterochromatin and gene-rich domains. Surprisingly, we find that PRC1-linked H2A monoubiquitylation is sufficient to recruit PRC2 to chromatin in vivo, suggesting a mechanism through which recognition of unmethylated CpG determines the localization of both PRC1 and PRC2 at canonical and atypical target sites. We discuss our data in light of emerging evidence suggesting that PcG recruitment is a default state at licensed chromatin sites, mediated by interplay between CpG hypomethylation and counteracting H3 tail modifications.


EMBO Reports | 2015

The interplay of histone modifications - writers that read.

Tianyi Zhang; Sarah Cooper; Neil Brockdorff

Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone‐modifying proteins, and discuss how this may be important in defining gene expression states during development.


The EMBO Journal | 2014

The long non‐coding RNA Paupar regulates the expression of both local and distal genes

Keith W. Vance; Stephen N. Sansom; Sheena Lee; Vladislava Chalei; Lesheng Kong; Sarah Cooper; Peter L. Oliver; Chris P. Ponting

Although some long noncoding RNAs (lncRNAs) have been shown to regulate gene expression in cis, it remains unclear whether lncRNAs can directly regulate transcription in trans by interacting with chromatin genome‐wide independently of their sites of synthesis. Here, we describe the genomically local and more distal functions of Paupar, a vertebrate‐conserved and central nervous system‐expressed lncRNA transcribed from a locus upstream of the gene encoding the PAX6 transcription factor. Knockdown of Paupar disrupts the normal cell cycle profile of neuroblastoma cells and induces neural differentiation. Paupar acts in a transcript‐dependent manner both locally, to regulate Pax6, as well as distally by binding and regulating genes on multiple chromosomes, in part through physical association with PAX6 protein. Paupar binding sites are enriched near promoters and can function as transcriptional regulatory elements whose activity is modulated by Paupar transcript levels. Our findings demonstrate that a lncRNA can function in trans at transcriptional regulatory elements distinct from its site of synthesis to control large‐scale transcriptional programmes.


PLOS Genetics | 2013

Chromatin Sampling—An Emerging Perspective on Targeting Polycomb Repressor Proteins

Robert J. Klose; Sarah Cooper; Anca M. Farcas; Neil P. Blackledge; Neil Brockdorff

Polycomb group (PcG) repressor proteins play a central role in gene regulation through differentiation and development, conferring repressive chromatin configurations at target gene promoters through their inherent histone modification activities. Recruitment of Polycomb repressor proteins to defined targets has been attributed to instructive mechanisms in which sequence-specific binding proteins and/or noncoding RNAs interact biochemically with the major Polycomb repressive complexes and thus define their sites of action. Here we highlight that this viewpoint is increasingly incompatible with experimental observations. We propose an alternative perspective based on the concept that Polycomb recruitment is responsive rather than instructive. Specifically, we suggest that Polycomb complexes sample permissive chromatin sites, and through positive feedback mechanisms, accumulate at those sites lacking antagonistic chromatin modifying activities linked to ongoing transcription.


Nature Structural & Molecular Biology | 2014

Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7.

Jennifer Y. Tan; Keith W. Vance; Miguel A. Varela; Tamara Sirey; Lauren M Watson; Helen J Curtis; Martina Marinello; Sandro Alves; Bruno R. Steinkraus; Sarah Cooper; Tatyana B. Nesterova; Neil Brockdorff; Tudor A. Fulga; Alexis Brice; Annie Sittler; Peter L. Oliver; Matthew J.A. Wood; Chris P. Ponting; Ana C. Marques

What causes the tissue-specific pathology of diseases resulting from mutations in housekeeping genes? Specifically, in spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disorder caused by a CAG-repeat expansion in ATXN7 (which encodes an essential component of the mammalian transcription coactivation complex, STAGA), the factors underlying the characteristic progressive cerebellar and retinal degeneration in patients were unknown. We found that STAGA is required for the transcription initiation of miR-124, which in turn mediates the post-transcriptional cross-talk between lnc-SCA7, a conserved long noncoding RNA, and ATXN7 mRNA. In SCA7, mutations in ATXN7 disrupt these regulatory interactions and result in a neuron-specific increase in ATXN7 expression. Strikingly, in mice this increase is most prominent in the SCA7 disease-relevant tissues, namely the retina and cerebellum. Our results illustrate how noncoding RNA–mediated feedback regulation of a ubiquitously expressed housekeeping gene may contribute to specific neurodegeneration.


PLOS ONE | 2008

The Chromatin Remodelling Factor dATRX Is Involved in Heterochromatin Formation

Andrew Bassett; Sarah Cooper; Anan Ragab; Andrew Travers

Despite extensive study of heterochromatin, relatively little is known about the mechanisms by which such a structure forms. We show that the Drosophila homologue of the human α-thalassemia and mental retardation X-linked protein (dATRX), is important in the formation or maintenance of heterochromatin through modification of position effect variegation. We further show that there are two isoforms of the dATRX protein, the longer of which interacts directly with heterochromatin protein 1 (dHP-1) through a CxVxL motif both in vitro and in vivo. These two proteins co-localise at heterochromatin in a manner dependent on this motif. Consistent with this observation, the long isoform of the dATRX protein localises primarily to the heterochromatin at the chromocentre on salivary gland polytene chromosomes, whereas the short isoform binds to many sites along the chromosome arms. We suggest that the establishment of a regular nucleosomal organisation may be common to heterochromatin and transcriptionally repressed chromatin in other locations, and may require the action of ATP dependent chromatin remodelling factors.


Nature Communications | 2016

Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2

Sarah Cooper; Anne Grijzenhout; Elizabeth Underwood; Katia Ancelin; Tianyi Zhang; Tatyana B. Nesterova; Burcu Anil-Kirmizitas; Andrew Bassett; Susanne M. Kooistra; Karl Agger; Kristian Helin; Edith Heard; Neil Brockdorff

The Polycomb repressive complexes PRC1 and PRC2 play a central role in developmental gene regulation in multicellular organisms. PRC1 and PRC2 modify chromatin by catalysing histone H2A lysine 119 ubiquitylation (H2AK119u1), and H3 lysine 27 methylation (H3K27me3), respectively. Reciprocal crosstalk between these modifications is critical for the formation of stable Polycomb domains at target gene loci. While the molecular mechanism for recognition of H3K27me3 by PRC1 is well defined, the interaction of PRC2 with H2AK119u1 is poorly understood. Here we demonstrate a critical role for the PRC2 cofactor Jarid2 in mediating the interaction of PRC2 with H2AK119u1. We identify a ubiquitin interaction motif at the amino-terminus of Jarid2, and demonstrate that this domain facilitates PRC2 localization to H2AK119u1 both in vivo and in vitro. Our findings ascribe a critical function to Jarid2 and define a key mechanism that links PRC1 and PRC2 in the establishment of Polycomb domains.


Development | 2016

Functional analysis of AEBP2, a PRC2 Polycomb protein, reveals a Trithorax phenotype in embryonic development and in ESCs

Anne Grijzenhout; Jonathan Godwin; Haruhiko Koseki; Michal R. Gdula; Dorota Szumska; Joanna F. McGouran; Shoumo Bhattacharya; Benedikt M. Kessler; Neil Brockdorff; Sarah Cooper

The Polycomb repressive complexes PRC1 and PRC2 are key mediators of heritable gene silencing in multicellular organisms. Here, we characterise AEBP2, a known PRC2 co-factor which, in vitro, has been shown to stimulate PRC2 activity. We show that AEBP2 localises specifically to PRC2 target loci, including the inactive X chromosome. Proteomic analysis confirms that AEBP2 associates exclusively with PRC2 complexes. However, analysis of embryos homozygous for a targeted mutation of Aebp2 unexpectedly revealed a Trithorax phenotype, normally linked to antagonism of Polycomb function. Consistent with this, we observe elevated levels of PRC2-mediated histone H3K27 methylation at target loci in Aebp2 mutant embryonic stem cells (ESCs). We further demonstrate that mutant ESCs assemble atypical hybrid PRC2 subcomplexes, potentially accounting for enhancement of Polycomb activity, and suggesting that AEBP2 normally plays a role in defining the mutually exclusive composition of PRC2 subcomplexes. Highlighted article: Targeted mutation of the Polycomb protein AEBP2 in mouse provides evidence for a role for this factor in defining the composition and activity of PRC2 complexes.


Mechanisms of Development | 2007

In vivo function of a novel Siah protein in Drosophila

Sarah Cooper

The Siah proteins, mammalian homologues of the Drosophila Sina protein, function as E3 ubiquitin ligase enzymes and target a wide range of cellular proteins for degradation. Here, I investigate the in vivo function of the fly protein, Sina-Homologue (SinaH), which is highly similar to Sina. Flies that completely lack SinaH are viable and in combination with a mutation in the gene, Ebi, show an extra dorsal central bristle phenotype. I also show that SinaH and Ebi can interact with each other both in vivo and in vitro suggesting that they act in the same physical complex. Flies that lack both Sina and Sina-Homologue were also created and show visible eye and bristle phenotypes, which can be explained by an inability to degrade the neuronal repressor, Tramtrack. I find no evidence for redundancy in the function of Sina and SinaH.

Collaboration


Dive into the Sarah Cooper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Travers

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge