Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Lysaght is active.

Publication


Featured researches published by Andrew C. Lysaght.


Nature Biotechnology | 2012

energy extraction from the biologic battery in the inner ear

Patrick P. Mercier; Andrew C. Lysaght; Saurav Bandyopadhyay; Anantha P. Chandrakasan; Konstantina M. Stankovic

Endocochlear potential (EP) is a battery-like electrochemical gradient found in and actively maintained by the inner ear. Here we demonstrate that the mammalian EP can be used as a power source for electronic devices. We achieved this by designing an anatomically sized, ultra-low quiescent-power energy harvester chip integrated with a wireless sensor capable of monitoring the EP itself. Although other forms of in vivo energy harvesting have been described in lower organisms, and thermoelectric, piezoelectric and biofuel devices are promising for mammalian applications, there have been few, if any, in vivo demonstrations in the vicinity of the ear, eye and brain. In this work, the chip extracted a minimum of 1.12 nW from the EP of a guinea pig for up to 5 h, enabling a 2.4 GHz radio to transmit measurement of the EP every 40–360 s. With future optimization of electrode design, we envision using the biologic battery in the inner ear to power chemical and molecular sensors, or drug-delivery actuators for diagnosis and therapy of hearing loss and other disorders.


international solid-state circuits conference | 2014

23.2 A 1.1nW energy harvesting system with 544pW quiescent power for next-generation implants

Saurav Bandyopadhyay; Patrick P. Mercier; Andrew C. Lysaght; Konstantina M. Stankovic; Anantha P. Chandrakasan

A wireless sensor that is powered from the endocochlear potential (EP), a 70-to-100mV bio-potential inside the mammalian ear, has been demonstrated in [1]. Due to the anatomical size and physiological constraints inside the ear, a maximum of 1.1 to 6.25nW can be extracted from the EP. The nanowatt power budget of the sensor gives rise to unique challenges with power conversion efficiency and quiescent current reduction in the power management unit (PMU). While [1] presents the system aspects of the biomedical harvesting including the biologic interface and system measurements, this work presents the details of the nanowatt PMU required to power the electronics. More specifically, it focuses on the low-power circuit design techniques needed to realize a nW power converter that is applicable to a broad spectrum of emerging biomedical applications with ultra-low energy-harvesting sources.


Journal of Proteome Research | 2011

Proteome of human perilymph.

Andrew C. Lysaght; Shyan-Yuan Kao; Joao A. Paulo; Saumil N. Merchant; Hanno Steen; Konstantina M. Stankovic

Current diagnostic tools limit a clinicians ability to discriminate between many possible causes of sensorineural hearing loss. This constraint leads to the frequent diagnosis of the idiopathic condition, leaving patients without a clear prognosis and only general treatment options. As a first step toward developing new diagnostic tools and improving patient care, we report the first use of liquid chromatography-tandem mass-spectrometry (LC-MS/MS) to map the proteome of human perilymph. Using LC-MS/MS, we analyzed four samples, two collected from patients with vestibular schwannoma (VS) and two from patients undergoing cochlear implantation (CI). For each cohort, one sample contained pooled specimens collected from five patients and the second contained a specimen obtained from a single patient. Of the 271 proteins identified with high confidence among the samples, 71 proteins were common in every sample and used to conservatively define the proteome of human perilymph. Comparison to human cerebrospinal fluid and blood plasma, as well as murine perilymph, showed significant similarity in protein content across fluids; however, a quantitative comparison was not possible. Fifteen candidate biomarkers of VS were identified by comparing VS and CI samples. This list will be used in future investigations targeted at discriminating between VS tumors associated with good versus poor hearing.


PLOS ONE | 2015

Immediate and Delayed Cochlear Neuropathy after Noise Exposure in Pubescent Mice

Jane Bjerg Jensen; Andrew C. Lysaght; M. Charles Liberman; Klaus Qvortrup; Konstantina M. Stankovic

Moderate acoustic overexposure in adult rodents is known to cause acute loss of synapses on sensory inner hair cells (IHCs) and delayed degeneration of the auditory nerve, despite the completely reversible temporary threshold shift (TTS) and morphologically intact hair cells. Our objective was to determine whether a cochlear synaptopathy followed by neuropathy occurs after noise exposure in pubescence, and to define neuropathic versus non-neuropathic noise levels for pubescent mice. While exposing 6 week old CBA/CaJ mice to 8-16 kHz bandpass noise for 2 hrs, we defined 97 dB sound pressure level (SPL) as the threshold for this particular type of neuropathic exposure associated with TTS, and 94 dB SPL as the highest non-neuropathic noise level associated with TTS. Exposure to 100 dB SPL caused permanent threshold shift although exposure of 16 week old mice to the same noise is reported to cause only TTS. Amplitude of wave I of the auditory brainstem response, which reflects the summed activity of the cochlear nerve, was complemented by synaptic ribbon counts in IHCs using confocal microscopy, and by stereological counts of peripheral axons and cell bodies of the cochlear nerve from 24 hours to 16 months post exposure. Mice exposed to neuropathic noise demonstrated immediate cochlear synaptopathy by 24 hours post exposure, and delayed neurodegeneration characterized by axonal retraction at 8 months, and spiral ganglion cell loss at 8-16 months post exposure. Although the damage was initially limited to the cochlear base, it progressed to also involve the cochlear apex by 8 months post exposure. Our data demonstrate a fine line between neuropathic and non-neuropathic noise levels associated with TTS in the pubescent cochlea.


IEEE Journal of Solid-state Circuits | 2014

A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications

Patrick P. Mercier; Saurav Bandyopadhyay; Andrew C. Lysaght; Konstantina M. Stankovic; Anantha P. Chandrakasan

This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 μm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply prior to energy harvesting operation.


Neurobiology of Disease | 2013

Loss of osteoprotegerin expression in the inner ear causes degeneration of the cochlear nerve and sensorineural hearing loss

Shyan-Yuan Kao; Judith S. Kempfle; Jane Bjerg Jensen; Deborah Perez-Fernandez; Andrew C. Lysaght; Albert Edge; Konstantina M. Stankovic

Osteoprotegerin (OPG) is a key regulator of bone remodeling. Mutations and variations in the OPG gene cause many human diseases that are characterized by not only skeletal abnormalities but also poorly understood hearing loss: Pagets disease, osteoporosis, and celiac disease. To gain insight into the mechanisms of hearing loss in OPG deficiency, we studied OPG knockout (Opg(-/-)) mice. We show that they develop sensorineural hearing loss, in addition to conductive hearing loss due to abnormal middle-ear bones. OPG deficiency caused demyelination and degeneration of the cochlear nerve in vivo. It also activated ERK, sensitized spiral ganglion cells (SGC) to apoptosis, and inhibited proliferation and survival of cochlear stem cells in vitro, which could be rescued by treatment with exogenous OPG, an ERK inhibitor, or bisphosphonate. Our results demonstrate a novel role for OPG in the regulation of SGC survival, and suggest a mechanism for sensorineural hearing loss in OPG deficiency.


PLOS ONE | 2014

FGF23 deficiency leads to mixed hearing loss and middle ear malformation in mice.

Andrew C. Lysaght; Quan Yuan; Yi Chiao Fan; Neil Kalwani; Paul A. Caruso; MaryBeth Cunnane; Beate Lanske; Konstantina M. Stankovic

Fibroblast growth factor 23 (FGF23) is a circulating hormone important in phosphate homeostasis. Abnormal serum levels of FGF23 result in systemic pathologies in humans and mice, including renal phosphate wasting diseases and hyperphosphatemia. We sought to uncover the role FGF23 plays in the auditory system due to shared molecular mechanisms and genetic pathways between ear and kidney development, the critical roles multiple FGFs play in auditory development and the known hearing phenotype in mice deficient in klotho (KL), a critical co-factor for FGF23 signaling. Using functional assessments of hearing, we demonstrate that Fgf mice are profoundly deaf. Fgf mice have moderate hearing loss above 20 kHz, consistent with mixed conductive and sensorineural pathology of both middle and inner ear origin. Histology and high-voltage X-ray computed tomography of Fgf mice demonstrate dysplastic bulla and ossicles; Fgf mice have near-normal morphology. The cochleae of mutant mice appear nearly normal on gross and microscopic inspection. In wild type mice, FGF23 is ubiquitously expressed throughout the cochlea. Measurements from Fgf mice do not match the auditory phenotype of Kl −/− mice, suggesting that loss of FGF23 activity impacts the auditory system via mechanisms at least partially independent of KL. Given the extensive middle ear malformations and the overlap of initiation of FGF23 activity and Eustachian tube development, this work suggests a possible role for FGF23 in otitis media.


Otology & Neurotology | 2013

Sporadic vestibular schwannomas associated with good hearing secrete higher levels of fibroblast growth factor 2 than those associated with poor hearing irrespective of tumor size.

Sonam Dilwali; Andrew C. Lysaght; Daniel S. Roberts; Fred G. Barker; Michael J. McKenna; Konstantina M. Stankovic

Hypothesis We hypothesize that the severity of hearing loss (HL) associated with sporadic vestibular schwannomas (VS) is correlated with tumor secretion of proteins with ototoxic or otoprotective potential. Background Because the recognition that HL associated with VS is not solely due to compression of the auditory nerve, elucidating the mechanism by which VS cause HL has been an important task. We previously showed that VS stratified by hearing have differential gene expression. We now focus on identifying differentially expressed proteins in tumor secretions. Methods Fresh surgical specimens of VS were incubated in sterile PBS at 37°C to collect secretions. The specimens were divided into a group associated with good hearing (GH, word recognition ≥70% and pure-tone average ⩽30 dB, n = 11) or poor hearing (PH, n = 10). The groups were compared using a customized cytokine array. Statistically significant results were verified with an enzyme-linked immunosorbent assay on a different set of secretions (n = 8 for GH and n = 10 for PH group). Results Of the 37 molecules we studied, 9 were significantly expressed in secretions from VS compared with secretions from control nerves. Secretion of fibroblast growth factor 2 (FGF2) was 3.5-fold higher in VS associated with GH versus PH based on cytokine array analysis (p = 0.02), which was validated with enzyme-linked immunosorbent assay. Conclusion This study highlights FGF2, a mitogen known to protect the auditory nerve, as a potential tumor-secreted mediator of hearing protection in VS. If FGF2’s significant role in hearing protection in patients with VS is validated, then FGF2 could be used as a biomarker for HL in VS, and therapeutic targeting of the FGF2 signaling pathway may reduce HL due to VS.


european solid-state circuits conference | 2013

A 78 pW 1 b/s 2.4 GHz radio transmitter for near-zero-power sensing applications

Patrick P. Mercier; Saurav Bandyopadhyay; Andrew C. Lysaght; Konstantina M. Stankovic; Anantha P. Chandrakasan

This paper presents an ultra-low-standby-power radio transmitter that was designed for applications with extreme energy storage and/or energy harvesting constraints. By utilizing aggressive power gating techniques within a low-complexity architecture featuring only a single RF stage, the transmitter achieved a standby power consumption of 39.7 pW. The architecture employed a direct-RF power oscillator that featured an on-board loop antenna that functioned as both the resonant and radiative element. Supporting both OOK and FSK modulations, the transmitter consumed 38 pJ/bit at an instantaneous data rate of 5 Mb/s. After duty-cycling down to an average data rate of 1 b/s, the transmitter consumed an average power of 78 pW.


Journal of Biomedical Optics | 2013

Quantitative polarized light microscopy of unstained mammalian cochlear sections

Neil Kalwani; Cheng Ai Ong; Andrew C. Lysaght; Simon J. Haward; Gareth H. McKinley; Konstantina M. Stankovic

Abstract. Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo.

Collaboration


Dive into the Andrew C. Lysaght's collaboration.

Top Co-Authors

Avatar

Konstantina M. Stankovic

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Anantha P. Chandrakasan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saurav Bandyopadhyay

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Kalwani

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Shyan-Yuan Kao

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge