Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Nelson is active.

Publication


Featured researches published by Andrew C. Nelson.


Genome Research | 2011

Genome-wide analysis of alternative splicing in Caenorhabditis elegans

Arun K. Ramani; John A. Calarco; Qun Pan; Sepand Mavandadi; Ying Wang; Andrew C. Nelson; Leo J. Lee; Quaid Morris; Benjamin J. Blencowe; Mei Zhen; Andrew G. Fraser

Alternative splicing (AS) plays a crucial role in the diversification of gene function and regulation. Consequently, the systematic identification and characterization of temporally regulated splice variants is of critical importance to understanding animal development. We have used high-throughput RNA sequencing and microarray profiling to analyze AS in C. elegans across various stages of development. This analysis identified thousands of novel splicing events, including hundreds of developmentally regulated AS events. To make these data easily accessible and informative, we constructed the C. elegans Splice Browser, a web resource in which researchers can mine AS events of interest and retrieve information about their relative levels and regulation across development. The data presented in this study, along with the Splice Browser, provide the most comprehensive set of annotated splice variants in C. elegans to date, and are therefore expected to facilitate focused, high resolution in vivo functional assays of AS function.


Genome Biology | 2009

High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans

Arun K. Ramani; Andrew C. Nelson; Philipp Kapranov; Ian Bell; Thomas R. Gingeras; Andrew G. Fraser

BackgroundWhile many genome sequences are complete, transcriptomes are less well characterized. We used both genome-scale tiling arrays and massively parallel sequencing to map the Caenorhabditis elegans transcriptome across development. We utilized this framework to identify transcriptome changes in animals lacking the nonsense-mediated decay (NMD) pathway.ResultsWe find that while the majority of detectable transcripts map to known gene structures, >5% of transcribed regions fall outside current gene annotations. We show that >40% of these are novel exons. Using both technologies to assess isoform complexity, we estimate that >17% of genes change isoform across development. Next we examined how the transcriptome is perturbed in animals lacking NMD. NMD prevents expression of truncated proteins by degrading transcripts containing premature termination codons. We find that approximately 20% of genes produce transcripts that appear to be NMD targets. While most of these arise from splicing errors, NMD targets are enriched for transcripts containing open reading frames upstream of the predicted translational start (uORFs). We identify a relationship between the Kozak consensus surrounding the true start codon and the degree to which uORF-containing transcripts are targeted by NMD and speculate that translational efficiency may be coupled to transcript turnover via the NMD pathway for some transcripts.ConclusionsWe generated a high-resolution transcriptome map for C. elegans and used it to identify endogenous targets of NMD. We find that these transcripts arise principally through splicing errors, strengthening the prevailing view that splicing and NMD are highly interlinked processes.


The Journal of Pathology | 2012

An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma

Andrew C. Nelson; Nischalan Pillay; Stephen Henderson; Nadège Presneau; Roberto Tirabosco; Dina Halai; Fitim Berisha; Paul Flicek; Derek L. Stemple; Claudio D. Stern; Fiona C. Wardle; Adrienne M. Flanagan

Chordoma is a rare malignant tumour of bone, the molecular marker of which is the expression of the transcription factor, brachyury. Having recently demonstrated that silencing brachyury induces growth arrest in a chordoma cell line, we now seek to identify its downstream target genes. Here we use an integrated functional genomics approach involving shRNA‐mediated brachyury knockdown, gene expression microarray, ChIP‐seq experiments, and bioinformatics analysis to achieve this goal. We confirm that the T‐box binding motif of human brachyury is identical to that found in mouse, Xenopus, and zebrafish development, and that brachyury acts primarily as an activator of transcription. Using human chordoma samples for validation purposes, we show that brachyury binds 99 direct targets and indirectly influences the expression of 64 other genes, thereby acting as a master regulator of an elaborate oncogenic transcriptional network encompassing diverse signalling pathways including components of the cell cycle, and extracellular matrix components. Given the wide repertoire of its active binding and the relative specific localization of brachyury to the tumour cells, we propose that an RNA interference‐based gene therapy approach is a plausible therapeutic avenue worthy of investigation. Copyright


Development | 2013

Conserved non-coding elements and cis regulation: actions speak louder than words

Andrew C. Nelson; Fiona C. Wardle

It is a truth (almost) universally acknowledged that conserved non-coding genomic sequences function in the cis regulation of neighbouring genes. But is this a misconception? The literature is strewn with examples of conserved non-coding sequences being able to drive reporter expression, but the extent to which such sequences are actually used endogenously in vivo is only now being rigorously explored using unbiased genome-scale approaches. Here, we review the emerging picture, examining the extent to which conserved non-coding sequences equivalently regulate gene expression in different species, or at different developmental stages, and how genomics approaches are revealing the relationship between sequence conservation and functional use of cis-regulatory elements.


Development | 2015

Tbx6, Mesp-b and Ripply1 regulate the onset of skeletal myogenesis in zebrafish

Stefanie E. Windner; Rosemarie Doris; Chantal M. Ferguson; Andrew C. Nelson; Guillaume Valentin; Haihan Tan; Andrew C. Oates; Fiona C. Wardle; Stephen H. Devoto

During embryonic development, the paraxial mesoderm becomes segmented into somites, within which proliferative muscle progenitors and muscle fibers establish the skeletal musculature. Here, we demonstrate that a gene network previously implicated in somite boundary formation, involving the transcriptional regulators Tbx6, Mesp-b and Ripply1, also confers spatial and temporal regulation to skeletal myogenesis in zebrafish. We show that Tbx6 directly regulates mesp-b and ripply1 expression in vivo, and that the interactions within the regulatory network are largely conserved among vertebrates. Mesp-b is necessary and sufficient for the specification of a subpopulation of muscle progenitors, the central proportion of the Pax3+/Pax7+ dermomyotome. Conditional ubiquitous expression indicates that Mesp-b acts by inhibiting myogenic differentiation and by inducing the dermomyotome marker meox1. By contrast, Ripply1 induces a negative-feedback loop by promoting Tbx6 protein degradation. Persistent Tbx6 expression in Ripply1 knockdown embryos correlates with a deficit in dermomyotome and myotome marker gene expression, suggesting that Ripply1 promotes myogenesis by terminating Tbx6-dependent inhibition of myogenic maturation. Together, our data suggest that Mesp-b is an intrinsic upstream regulator of skeletal muscle progenitors and that, in zebrafish, the genes regulating somite boundary formation also regulate the development of the dermomyotome in the anterior somite compartment. Summary: Interactions between Tbx6, Mesp-b and Ripply1, which are known regulators of somite boundary formation, also control spatiotemporal aspects of skeletal myogenesis in zebrafish embryos.


Molecular and Cellular Biology | 2013

The PR/SET Domain Zinc Finger Protein Prdm4 Regulates Gene Expression in Embryonic Stem Cells but Plays a Nonessential Role in the Developing Mouse Embryo

Debora Bogani; Marc A. J. Morgan; Andrew C. Nelson; Ita Costello; Joanna F. McGouran; Benedikt M. Kessler; Elizabeth J. Robertson; Elizabeth K. Bikoff

ABSTRACT Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal.


BMC Biology | 2014

Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression

Andrew C. Nelson; Stephen J. Cutty; Marie Niini; Derek L. Stemple; Paul Flicek; Corinne Houart; Ashley E.E. Bruce; Fiona C. Wardle

BackgroundNodal signalling is an absolute requirement for normal mesoderm and endoderm formation in vertebrate embryos, yet the transcriptional networks acting directly downstream of Nodal and the extent to which they are conserved is largely unexplored, particularly in vivo. Eomesodermin also plays a role in patterning mesoderm and endoderm in vertebrates, but its mechanisms of action and how it interacts with the Nodal signalling pathway are still unclear.ResultsUsing a combination of expression analysis and chromatin immunoprecipitation with deep sequencing (ChIP-seq) we identify direct targets of Smad2, the effector of Nodal signalling in blastula stage zebrafish embryos, including many novel target genes. Through comparison of these data with published ChIP-seq data in human, mouse and Xenopus we show that the transcriptional network driven by Smad2 in mesoderm and endoderm is conserved in these vertebrate species. We also show that Smad2 and zebrafish Eomesodermin a (Eomesa) bind common genomic regions proximal to genes involved in mesoderm and endoderm formation, suggesting Eomesa forms a general component of the Smad2 signalling complex in zebrafish. Combinatorial perturbation of Eomesa and Smad2-interacting factor Foxh1 results in loss of both mesoderm and endoderm markers, confirming the role of Eomesa in endoderm formation and its functional interaction with Foxh1 for correct Nodal signalling. Finally, we uncover a novel role for Eomesa in repressing ectodermal genes in the early blastula.ConclusionsOur data demonstrate that evolutionarily conserved developmental functions of Nodal signalling occur through maintenance of the transcriptional network directed by Smad2. This network is modulated by Eomesa in zebrafish which acts to promote mesoderm and endoderm formation in combination with Nodal signalling, whilst Eomesa also opposes ectoderm gene expression. Eomesa, therefore, regulates the formation of all three germ layers in the early zebrafish embryo.


PLOS Genetics | 2015

Blimp1/Prdm1 functions in opposition to Irf1 to maintain neonatal tolerance during postnatal intestinal maturation

Arne W. Mould; Marc A. J. Morgan; Andrew C. Nelson; Elizabeth K. Bikoff; Elizabeth J. Robertson

The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine.


Nature Communications | 2016

Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal–foetal interface during pregnancy

Andrew C. Nelson; Arne W. Mould; Elizabeth K. Bikoff; Elizabeth J. Robertson

Growth and survival of the mammalian embryo within the uterine environment depends on the placenta, a highly complex vascularized organ comprised of both maternal and foetal tissues. Recent experiments demonstrate that the zinc finger transcriptional repressor Prdm1/Blimp1 is essential for specification of spiral artery trophoblast giant cells (SpA-TGCs) that invade and remodel maternal blood vessels. To learn more about functional contributions made by Blimp1+ cell lineages here we perform the first single-cell RNA-seq analysis of the placenta. Cell types of both foetal and maternal origin are profiled. Comparisons with microarray datasets from mutant placenta and in vitro differentiated trophoblast stem cells allow us to identify Blimp1-dependent transcripts enriched in SpA-TGCs. Our experiments provide new insights into the functionally distinct cell types present at the maternal–foetal interface and advance our knowledge of dynamic gene expression patterns controlling placental morphogenesis and vascular mimicry.


Developmental Biology | 2012

A cis-regulatory module upstream of deltaC regulated by Ntla and Tbx16 drives expression in the tailbud, presomitic mesoderm and somites

Leila Jahangiri; Andrew C. Nelson; Fiona C. Wardle

Somites form by an iterative process from unsegmented, presomitic mesoderm (PSM). Notch pathway components, such as deltaC (dlc) have been shown to play a role in this process, while the T-box transcription factors Ntla and Tbx16 regulate somite formation upstream of this by controlling supply and movement of cells into the PSM during gastrulation and tailbud outgrowth. In this work, we report that Ntla and Tbx16 play a more explicit role in segmentation by directly regulating dlc expression. In addition we describe a cis-regulatory module (CRM) upstream of dlc that drives expression of a reporter in the tailbud, PSM and somites during somitogenesis. This CRM is bound by both Ntla and Tbx16 at a cluster of T-box binding sites, which are required in combination for activation of the CRM.

Collaboration


Dive into the Andrew C. Nelson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek L. Stemple

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Paul Flicek

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas R. Gingeras

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge