Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew C. Webb is active.

Publication


Featured researches published by Andrew C. Webb.


Journal of Clinical Investigation | 1986

Multiple biological activities of human recombinant interleukin 1.

Charles A. Dinarello; Joseph G. Cannon; Harry A. Bernheim; G LoPreste; D L Lynn; R N Love; Andrew C. Webb; Philip E. Auron; R C Reuben

Complementary DNA coding for human monocyte interleukin 1 (IL-1), pI 7 form, was expressed in Escherichia coli. During purification, IL-1 activity on murine T cells was associated with the recombinant protein. Homogeneous human recombinant IL-1 (hrIL-1) was tested in several assays to demonstrate the immunological and inflammatory properties attributed to this molecule. hrIL-1 induced proliferative responses in a cloned murine T cell in the presence of suboptimal concentrations of mitogen, whereas no effect was observed with hrIL-1 alone. At concentrations of 0.05 ng/ml, hrIL-1 doubled the response to mitogen (5 X 10(6) half maximal units/mg). Human peripheral blood T cells depleted of adherent cells underwent a blastogenic response and released interleukin 2 in the presence of hrIL-1 and mitogen. hrIL-1 was a potent inflammatory agent by its ability to induce human dermal fibroblast prostaglandin E2 production in vitro and to produce monophasic (endogenous pyrogen) fever when injected into rabbits or endotoxin-resistant mice. These studies establish that the dominant pI 7 form of recombinant human IL-1 possesses immunological and inflammatory properties and acts on the central nervous system to produce fever.


Molecular and Cellular Biology | 1994

Transcription factors NF-IL6 and CREB recognize a common essential site in the human prointerleukin 1 beta gene.

Junichi Tsukada; K Saito; Wayne R. Waterman; Andrew C. Webb; Philip E. Auron

A site located between -2782 and -2729 of the human prointerleukin-1 beta (IL1B) gene functions as a strong lipopolysaccharide (LPS)-responsive enhancer independent of the previously identified enhancer located between -2896 and -2846 (F. Shirakawa, K. Saito, C.A. Bonagura, D.L. Galson, M. J. Fenton, A. C. Webb, and P. E. Auron, Mol. Cell. Biol. 13:1332-1344, 1993). Although these two enhancers appear to function cooperatively in the native sequence context, they function independently as LPS-responsive elements upon removal of an interposed silencer sequence. The new enhancer is not induced by dibutyryl cyclic AMP (dbcAMP) alone but is superinduced by costimulation with LPS-dbcAMP. This pattern of induction depends upon the nature of the sequence, a composite NF-IL6-cAMP response element (CRE) binding site. This pseudosymmetrical sequence is shown to contrast with a classical symmetric CRE which responds to dbcAMP but not LPS. DNA binding studies using in vivo nuclear extract, recombinant proteins, and specific antibodies show that LPS induces the formation of two different complexes at the enhancer: (i) an NF-IL6-CREB heterodimer and (ii) a heterodimer consisting of NF-IL6 and a non-CREB, CRE-binding protein. Cotransfection studies using NF-IL6 and CREB expression vectors show that NF-IL6 transactivates the enhancer in the presence of LPS, whereas CREB acts either positively or negatively, depending upon its cAMP-regulated phosphorylation state. Our data demonstrate that the newly identified enhancer is a specialized LPS-responsive sequence which can be modulated by cAMP as a result of the involvement of NF-IL6-CRE-binding protein heterodimers.


Molecular and Cellular Biology | 1996

A novel STAT-like factor mediates lipopolysaccharide, interleukin 1 (IL-1), and IL-6 signaling and recognizes a gamma interferon activation site-like element in the IL1B gene.

Junichi Tsukada; Wayne R. Waterman; Yoshinobu Koyama; Andrew C. Webb; Philip E. Auron

Binding of many cytokines to their cognate receptors immediately activates Jak tyrosine kinases and their substrates, STAT (signal transducers and activators of transcription) DNA-binding proteins. The DNA binding targets of STATs are sequence elements related to the archetypal gamma interferon activation site, GAS. However, association of interleukin 1 (IL-1) with Jak-STAT signaling has remained unresolved. We now report an element termed LILRE (lipopolysaccharide [LPS] and IL-1-responsive element) in the human prointerleukin 1beta gene (IL1B) which can be immediately induced by either lipopolysaccharide (LPS) or IL-1 protein to bind a tyrosine-phosphorylated protein. This LPS- and IL-1-induced factor (LIL factor) is recognized by an antibody raised against the N terminus of Stat1, but not by those specific for either the C terminus of Stat1 or any other GAS-binding STAT. Phosphotyrosine (P-Tyr) specifically inhibits formation of the LIL factor-DNA complex, suggesting the importance of P-Tyr for the DNA-binding activity, as has been found for all STAT dimers. Analysis of DNA-binding specificity demonstrates that the LIL factor possesses a novel GAS-like binding activity that contrasts with those of other STATs in a requirement for a G residue at position 8 (TTCCTGAGA). Further investigation has revealed that IL-6, but neither IL-4 nor gamma interferon, activates the LIL factor. Thus, the existence of such a STAT-like factor (LIL-Stat) relates the LPS and IL-1 signaling pathway to other cytokine receptor signaling pathways via the activation of STATs. Moreover, the unique DNA-binding specificity and antigenicity of this factor suggest that LPS, IL-1, and IL-6 may use a common signaling pathway.


Molecular and Cellular Biology | 1999

Cytomegalovirus IE2 protein stimulates interleukin 1beta gene transcription via tethering to Spi-1/PU.1.

Nawarat Wara-aswapati; Zhiyong Yang; Wayne R. Waterman; Yoshinobu Koyama; Sotirios Tetradis; Bob K. Choy; Andrew C. Webb; Philip E. Auron

ABSTRACT Potent induction of the gene coding for human prointerleukin 1β (il1b) normally requires a far-upstream inducible enhancer in addition to a minimal promoter located between positions −131 and +12. The transcription factor Spi-1 (also called PU.1) is necessary for expression and binds to the minimal promoter, thus providing an essential transcription activation domain (TAD). In contrast, infection by human cytomegalovirus (HCMV) can strongly activate il1bvia the expression of immediate early (IE) viral proteins and eliminates the requirement for the upstream enhancer. Spi-1 has been circumstantially implicated as a host factor in this process. We report here the molecular basis for the direct involvement of Spi-1 in HCMV activation of il1b. Transfection of Spi-1-deficient HeLa cells demonstrated both the requirement of Spi-1 for IE activity and the need for a shorter promoter (−59 to +12) than that required in the absence of IE proteins. Furthermore, in contrast to normal, enhancer-dependent il1b expression, which absolutely requires both the Spi-1 winged helix-turn-helix (wHTH) DNA-binding domain and the majority of the Spi-1 TAD, il1b expression in the presence of IE proteins does not require the Spi-1 TAD, which plays a synergistic role. In addition, we demonstrate that a single IE protein, IE2, is critical for the induction of il1b. Protein-protein interaction experiments revealed that the wing motif within the Spi-1 wHTH domain directly recruits IE2. In turn, IE2 physically associates with the Spi-1 wing and requires the integrity of at least one region of IE2. Functional analysis demonstrates that both this region and a carboxy-terminal acidic TAD are required for IE2 function. Therefore, we propose a protein-tethered transactivation mechanism in which the il1b promoter-bound Spi-1 wHTH tethers IE2, which provides a TAD, resulting in the transactivation ofil1b.


Bioorganic & Medicinal Chemistry Letters | 2014

Synthesis and biological evaluation of isoprenylated coumarins as potential anti-pancreatic cancer agents.

Maria Jun; Alyssa F. Bacay; James Moyer; Andrew C. Webb; Dora Carrico-Moniz

A series of isoprenylated coumarins has been designed, synthesized, and evaluated against human pancreatic adenocarcinoma cell line PANC-1 under nutrient-rich and nutrient-deprived conditions. The compounds described investigate the effect of isoprenyl chain length and positioning on cell growth inhibition. The majority of these compounds displayed cytotoxicity against PANC-1 cells selectively in the absence of essential amino acids, glucose, and serum, and showed no cytotoxicity under nutrient-rich conditions. In this study, compound 6 exhibited the highest cytotoxic activity with an LC50 value of 4μM and induced apoptosis-like morphological changes in PANC-1 cells after a 24-h incubation. The evaluated structure-activity relationships show that substitution at the 6-position and the presence of a farnesyl isoprenyl tail are important structural features for enhanced preferential cytotoxicity. These findings provide important information to designing other structural analogues for potential application as novel pancreatic antitumor agents.


Biochimica et Biophysica Acta | 2014

Modular Analysis of Hipposin, a Histone-Derived Antimicrobial Peptide Consisting of Membrane Translocating and Membrane Permeabilizing Fragments

Maria E. Bustillo; Alexandra L. Fischer; Maria A. LaBouyer; Julia A. Klaips; Andrew C. Webb; Donald E. Elmore

Antimicrobial peptides continue to garner attention as potential alternatives to conventional antibiotics. Hipposin is a histone-derived antimicrobial peptide (HDAP) previously isolated from Atlantic halibut. Though potent against bacteria, its antibacterial mechanism had not been characterized. The mechanism of this peptide is particularly interesting to consider since the full hipposin sequence contains the sequences of parasin and buforin II (BF2), two other known antimicrobial peptides that act via different antibacterial mechanisms. While parasin kills bacteria by inducing membrane permeabilization, buforin II enters cells without causing significant membrane disruption, harming bacteria through interactions with intracellular nucleic acids. In this study, we used a modular approach to characterize hipposin and determine the role of the parasin and buforin II fragments in the overall hipposin mechanism. Our results show that hipposin kills bacteria by inducing membrane permeabilization, and this membrane permeabilization is promoted by the presence of the N-terminal domain. Portions of hipposin lacking the N-terminal sequence do not cause membrane permeabilization and function more similarly to buforin II. We also determined that the C-terminal portion of hipposin, HipC, is a cell-penetrating peptide that readily enters bacterial cells but has no measurable antimicrobial activity. HipC is the first membrane active histone fragment identified that does not kill bacterial or eukaryotic cells. Together, these results characterize hipposin and provide a useful starting point for considering the activity of chimeric peptides made by combining peptides with different antimicrobial mechanisms. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Experimental Cell Research | 1979

Mitochondrial DNA synthesis in oocytes of Xenopus laevis

Andrew C. Webb; Catherine J. Camp

Abstract Mitochondria isolated from stage 3 (about half-grown) oocytes of Xenopus laevis exhibit a DNA synthetic rate in vitro of 2.35 ± 0.28 pg/oocyte/h. Similarly, stage 6 (full-grown) oocyte mitochondria synthesize DNA (mtDNA) at 0.28 ± 0.02 pg/oocyte/h. By comparison, the rate of mtDNA synthesis by intact stage 6 oocytes following microinjection of [ 3 H]-dTTP was calculated to be 0.43 ± 0.08 pg/oocyte/h, indicating that the observed in vitro rates may represent minimum values. Measurements of DNA polymerase activity associated with mitochondria isolated from stage 3 oocytes are almost three times those recorded with stage 6 oocyte mitochondria. It appears that active replication of complete mtDNA molecules, which accompanies accumulation of mitochondria by the egg, is terminated midway through oogenesis.


Biochemical Genetics | 1980

Analysis of malate dehydrogenase isozymes from anuran amphibian ovary by isoelectric focusing

Andrew C. Webb; Hilary M. Ingalls

The isozyme patterns of ovarian malate dehydrogenase (MDH) from various anuran amphibian species were analyzed by isoelectric focusing (IEF). Extensive variability was observed in both the soluble (sMDH) and mitochondrial (mMDH) patterns with as few as two and as many nine bands being visualized in different species. The mean pIs for sMDH ranged from 4.5 to 8.3 and those for mMDH fell between 5.1 and 8.2. The sMDHs are considerably more heat labile in Rana species living in northern latitudes compared to those from southern states. Inhibition with p-chloromercuribenzoate (PCMB) revealed the importance of sulfhydryl groups for the activity of sMDHs, while the functional requirement for these groups in mMDHs appears to be of lesser importance. Observations from these studies lend support to the accumulating evidence that Rana pipiens from such southern locations as New Mexico may have undergone speciation.


Journal of Cancer | 2016

Identification of the Factors Responsible for the Selective in vitro Cytotoxic Activity of Isoprenylated Coumarin Derivatives under Nutrient-deprived Conditions

Hong Zhang; Ronghao Zhou; Maria Jun; Alyssa F. Bacay; Katherine Eyring; Andrew C. Webb; Dora Carrico-Moniz

Pancreatic cancer is one of the most devastating forms of human cancer. The lack of effective clinical treatments for pancreatic cancer has led to one of the lowest five-year survival rates among all cancers. Recently, our laboratory has developed a novel series of isoprenylated coumarin derivatives that have exhibited anti-pancreatic cancer activity exclusively under nutrient-deprived conditions. In this study, we report the effect of the various cell culture medium components on the preferential cytotoxicity of our lead isoprenylated coumarin compound against the pancreatic adenocarcinoma cell line PANC-1. In particular, our findings show a clear link between observed cytotoxicity and glucose deprivation, suggesting that our compound targets a salvage pathway when glycolysis is no longer an option for cancer cell survival. The cytotoxicity of our lead compound was also examined in vitro against two other pancreatic cancer cell lines, BxPC-3 and Capan-2 under both nutrient-rich and nutrient-deprived conditions.


Biophysical Journal | 2011

Characterizing the Antibacterial Mechanism of Three Novel Histone-Derived Antimicrobial Peptides

Sara A. Spinella; SeiEun Chun; Kathryn E. Pavia; Andrew C. Webb; Donald E. Elmore

The rise in antibiotic resistant pathogens has sparked interest in antimicrobial peptides (AMPs), especially those that are active against a wide variety of bacterial strains. Cell penetrating AMPs are of particular importance for their potential as both drug delivery systems and antimicrobial agents. Buforin II (BF2) is a well-characterized antimicrobial peptide derived from histone subunit H2A that kills bacteria by translocating across cell membranes and binding to nucleic acids. In this study, we compared the mechanisms of action of three novel histone-derived antimicrobial peptides (HDAPs), termed DesHDAP1-3, to that of BF2. DesHDAP1s antibacterial potency is similar to that of BF2 across several bacterial species, while DesHDAP2 and DesHDAP3 are generally weaker antibacterial agents. Our current data also implies that DesHDAP1 shows increased cytotoxicity against cancerous cells lines compared to BF2. Lipid vesicle studies measuring the translocation of all three designed peptides showed that DesHDAP2 does not cross lipid membranes as readily as DesHDAP1, DesHDAP3, or BF2, which may explain its poor antibacterial activity. For comparison, we have also considered the membrane permeabilization caused by the designed peptides using a propidium iodide uptake assay. Finally, we have considered the role of nucleic acid binding in the mechanism of the designed peptides by measuring the DNA binding and antimicrobial activity of mutant versions of the designed peptides. This data shows that all three peptides may not show the same correlation between DNA binding and activity observed for BF2. An understanding of how the designed peptides function is an important step in assessing their therapeutic potential and considering future design strategies.

Collaboration


Dive into the Andrew C. Webb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lanny J. Rosenwasser

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar

Charles A. Dinarello

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheldon M. Wolff

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge