Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Farmer is active.

Publication


Featured researches published by Andrew D. Farmer.


Nature Biotechnology | 2013

Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement

Rajeev K. Varshney; Chi Song; Rachit K. Saxena; Sarwar Azam; Sheng Yu; Andrew G. Sharpe; Steven B. Cannon; Jong-Min Baek; Benjamin D. Rosen; Bunyamin Tar'an; Teresa Millán; Xudong Zhang; Larissa Ramsay; Aiko Iwata; Ying Wang; William C. Nelson; Andrew D. Farmer; Pooran M. Gaur; Carol Soderlund; R. Varma Penmetsa; Chunyan Xu; Arvind K. Bharti; Weiming He; Peter Winter; Shancen Zhao; James K. Hane; Noelia Carrasquilla-Garcia; Janet A. Condie; Hari D. Upadhyaya; Ming-Cheng Luo

Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea—desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.


Nature Biotechnology | 2012

Draft genome sequence of pigeonpea ( Cajanus cajan ), an orphan legume crop of resource-poor farmers

Rajeev K. Varshney; Weineng Chen; Yupeng Li; Arvind K. Bharti; Rachit K. Saxena; J. A. Schlueter; Mark Ta Donoghue; Sarwar Azam; G. Y. Fan; A. M. Whaley; Andrew D. Farmer; J. Sheridan; Aiko Iwata; Reetu Tuteja; R. V. Penmetsa; W. Wu; H. D. Upadhyaya; Shiaw-Pyng Yang; Trushar Shah; K. B. Saxena; T. Michael; W. R. McCombie; B. C. Yang; Gengyun Zhang; Yang H; Jun Wang; Charles Spillane; Douglas R. Cook; Gregory D. May; Xun Xu

Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.7% (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis predicted 48,680 genes for pigeonpea and also showed the potential role that certain gene families, for example, drought tolerance–related genes, have played throughout the domestication of pigeonpea and the evolution of its ancestors. Although we found a few segmental duplication events, we did not observe the recent genome-wide duplication events observed in soybean. This reference genome sequence will facilitate the identification of the genetic basis of agronomically important traits, and accelerate the development of improved pigeonpea varieties that could improve food security in many developing countries.


BMC Plant Biology | 2010

RNA-Seq Atlas of Glycine max : A guide to the soybean transcriptome

Andrew J. Severin; Jenna Lynn Woody; Yung Tsi Bolon; Bindu Joseph; Brian W. Diers; Andrew D. Farmer; Gary J. Muehlbauer; Rex T. Nelson; David Grant; James E. Specht; Michelle A. Graham; Steven B. Cannon; Gregory D. May; Carroll P. Vance; Randy C. Shoemaker

BackgroundNext generation sequencing is transforming our understanding of transcriptomes. It can determine the expression level of transcripts with a dynamic range of over six orders of magnitude from multiple tissues, developmental stages or conditions. Patterns of gene expression provide insight into functions of genes with unknown annotation.ResultsThe RNA Seq-Atlas presented here provides a record of high-resolution gene expression in a set of fourteen diverse tissues. Hierarchical clustering of transcriptional profiles for these tissues suggests three clades with similar profiles: aerial, underground and seed tissues. We also investigate the relationship between gene structure and gene expression and find a correlation between gene length and expression. Additionally, we find dramatic tissue-specific gene expression of both the most highly-expressed genes and the genes specific to legumes in seed development and nodule tissues. Analysis of the gene expression profiles of over 2,000 genes with preferential gene expression in seed suggests there are more than 177 genes with functional roles that are involved in the economically important seed filling process. Finally, the Seq-atlas also provides a means of evaluating existing gene model annotations for the Glycine max genome.ConclusionsThis RNA-Seq atlas extends the analyses of previous gene expression atlases performed using Affymetrix GeneChip technology and provides an example of new methods to accommodate the increase in transcriptome data obtained from next generation sequencing. Data contained within this RNA-Seq atlas of Glycine max can be explored at http://www.soybase.org/soyseq.


Nature | 2010

Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis

Sergio E. Baranzini; Joann Mudge; Jennifer C. van Velkinburgh; Pouya Khankhanian; Irina Khrebtukova; Neil Miller; Lu Zhang; Andrew D. Farmer; Callum J. Bell; Ryan W. Kim; Gregory D. May; Jimmy E. Woodward; Stacy J. Caillier; Joseph P. McElroy; Refujia Gomez; Marcelo J. Pando; Leonda E. Clendenen; Elena E. Ganusova; Faye D. Schilkey; Thiruvarangan Ramaraj; Omar Khan; Jim J. Huntley; Shujun Luo; Pui-Yan Kwok; Thomas D. Wu; Gary P. Schroth; Jorge R. Oksenberg; Stephen L. Hauser; Stephen F. Kingsmore

Monozygotic or ‘identical’ twins have been widely studied to dissect the relative contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an autoimmune demyelinating disease and common cause of neurodegeneration and disability in young adults, disease discordance in monozygotic twins has been interpreted to indicate environmental importance in its pathogenesis. However, genetic and epigenetic differences between monozygotic twins have been described, challenging the accepted experimental model in disambiguating the effects of nature and nurture. Here we report the genome sequences of one MS-discordant monozygotic twin pair, and messenger RNA transcriptome and epigenome sequences of CD4+ lymphocytes from three MS-discordant, monozygotic twin pairs. No reproducible differences were detected between co-twins among ∼3.6 million single nucleotide polymorphisms (SNPs) or ∼0.2 million insertion-deletion polymorphisms. Nor were any reproducible differences observed between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, copy number variations, mRNA and genomic SNP and insertion-deletion genotypes, or the expression of ∼19,000 genes in CD4+ T cells. Only 2 to 176 differences in the methylation of ∼2 million CpG dinucleotides were detected between siblings of the three twin pairs, in contrast to ∼800 methylation differences between T cells of unrelated individuals and several thousand differences between tissues or between normal and cancerous tissues. In the first systematic effort to estimate sequence variation among monozygotic co-twins, we did not find evidence for genetic, epigenetic or transcriptome differences that explained disease discordance. These are the first, to our knowledge, female, twin and autoimmune disease individual genome sequences reported.


Plant Journal | 2010

An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants.

Marc Libault; Andrew D. Farmer; Trupti Joshi; Kaori Takahashi; Raymond J. Langley; Levi D. Franklin; Ji He; Dong Xu; Gregory D. May; Gary Stacey

Soybean (Glycine max L.) is a major crop providing an important source of protein and oil, which can also be converted into biodiesel. A major milestone in soybean research was the recent sequencing of its genome. The sequence predicts 69,145 putative soybean genes, with 46,430 predicted with high confidence. In order to examine the expression of these genes, we utilized the Illumina Solexa platform to sequence cDNA derived from 14 conditions (tissues). The result is a searchable soybean gene expression atlas accessible through a browser (http://digbio.missouri.edu/soybean_atlas). The data provide experimental support for the transcription of 55,616 annotated genes and also demonstrate that 13,529 annotated soybean genes are putative pseudogenes, and 1736 currently unannotated sequences are transcribed. An analysis of this atlas reveals strong differences in gene expression patterns between different tissues, especially between root and aerial organs, but also reveals similarities between gene expression in other tissues, such as flower and leaf organs. In order to demonstrate the full utility of the atlas, we investigated the expression patterns of genes implicated in nodulation, and also transcription factors, using both the Solexa sequence data and large-scale qRT-PCR. The availability of the soybean gene expression atlas allowed a comparison with gene expression documented in the two model legume species, Medicago truncatula and Lotus japonicus, as well as data available for Arabidopsis thaliana, facilitating both basic and applied aspects of soybean research.


BMC Genomics | 2010

High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence

David L. Hyten; Steven B. Cannon; Qijian Song; Nathan Weeks; Edward W. Fickus; Randy C. Shoemaker; James E. Specht; Andrew D. Farmer; Gregory D. May; Perry B. Cregan

BackgroundThe Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapping of more single nucleotide polymorphism (SNP) markers were needed to anchor and orient the remaining genome sequence. To that end, next generation sequencing and high-throughput genotyping were combined to obtain a much higher resolution genetic map that could be used to anchor and orient most of the remaining sequence and to help validate the integrity of the existing scaffold builds.ResultsA total of 7,108 to 25,047 predicted SNPs were discovered using a reduced representation library that was subsequently sequenced by the Illumina sequence-by-synthesis method on the clonal single molecule array platform. Using multiple SNP prediction methods, the validation rate of these SNPs ranged from 79% to 92.5%. A high resolution genetic map using 444 recombinant inbred lines was created with 1,790 SNP markers. Of the 1,790 mapped SNP markers, 1,240 markers had been selectively chosen to target existing unanchored or un-oriented sequence scaffolds, thereby increasing the amount of anchored sequence to 97%.ConclusionWe have demonstrated how next generation sequencing was combined with high-throughput SNP detection assays to quickly discover large numbers of SNPs. Those SNPs were then used to create a high resolution genetic map that assisted in the assembly of scaffolds from the 8× whole genome shotgun sequences into pseudomolecules corresponding to chromosomes of the organism.


Plant Biotechnology Journal | 2011

Large‐scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi‐arid tropics of Asia and Africa

Pavana J Hiremath; Andrew D. Farmer; Steven B. Cannon; Jimmy E. Woodward; Himabindu Kudapa; Reetu Tuteja; Ashish Kumar; Amindala BhanuPrakash; Benjamin Mulaosmanovic; Neha Gujaria; L. Krishnamurthy; Pooran M. Gaur; Polavarapu B. KaviKishor; Trushar Shah; R. Srinivasan; Marc Lohse; Yongli Xiao; Christopher D. Town; Douglas R. Cook; Gregory D. May; Rajeev K. Varshney

Chickpea (Cicer arietinum L.) is an important legume crop in the semi-arid regions of Asia and Africa. Gains in crop productivity have been low however, particularly because of biotic and abiotic stresses. To help enhance crop productivity using molecular breeding techniques, next generation sequencing technologies such as Roche/454 and Illumina/Solexa were used to determine the sequence of most gene transcripts and to identify drought-responsive genes and gene-based molecular markers. A total of 103 215 tentative unique sequences (TUSs) have been produced from 435 018 Roche/454 reads and 21 491 Sanger expressed sequence tags (ESTs). Putative functions were determined for 49 437 (47.8%) of the TUSs, and gene ontology assignments were determined for 20 634 (41.7%) of the TUSs. Comparison of the chickpea TUSs with the Medicago truncatula genome assembly (Mt 3.5.1 build) resulted in 42 141 aligned TUSs with putative gene structures (including 39 281 predicted intron/splice junctions). Alignment of ∼37 million Illumina/Solexa tags generated from drought-challenged root tissues of two chickpea genotypes against the TUSs identified 44 639 differentially expressed TUSs. The TUSs were also used to identify a diverse set of markers, including 728 simple sequence repeats (SSRs), 495 single nucleotide polymorphisms (SNPs), 387 conserved orthologous sequence (COS) markers, and 2088 intron-spanning region (ISR) markers. This resource will be useful for basic and applied research for genome analysis and crop improvement in chickpea.


Nature Genetics | 2016

The genome sequences of Arachis duranensis and Arachis ipaensis , the diploid ancestors of cultivated peanut

David J. Bertioli; Steven B. Cannon; Lutz Froenicke; Guodong Huang; Andrew D. Farmer; Ethalinda K. S. Cannon; Xin Liu; Dongying Gao; Josh Clevenger; Sudhansu Dash; Longhui Ren; Márcio C. Moretzsohn; Kenta Shirasawa; Wei Huang; Bruna Vidigal; Brian Abernathy; Ye Chu; Chad E. Niederhuth; Pooja E. Umale; Ana Claudia Guerra Araujo; Alexander Kozik; Kyung Do Kim; Mark D. Burow; Rajeev K. Varshney; Xingjun Wang; Xinyou Zhang; Noelle A. Barkley; Patricia M. Guimarães; Sachiko Isobe; Baozhu Guo

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanuts A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanuts subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.


Plant Physiology | 2010

Complete Transcriptome of the Soybean Root Hair Cell, a Single-Cell Model, and Its Alteration in Response to Bradyrhizobium japonicum Infection

Marc Libault; Andrew D. Farmer; Laurent Brechenmacher; Jenny Drnevich; Raymond J. Langley; Damla D. Bilgin; Osman Radwan; David J. Neece; Steven J. Clough; Gregory D. May; Gary Stacey

Nodulation is the result of a mutualistic interaction between legumes and symbiotic soil bacteria (e.g. soybean [Glycine max] and Bradyrhizobium japonicum) initiated by the infection of plant root hair cells by the symbiont. Fewer than 20 plant genes involved in the nodulation process have been functionally characterized. Considering the complexity of the symbiosis, significantly more genes are likely involved. To identify genes involved in root hair cell infection, we performed a large-scale transcriptome analysis of B. japonicum-inoculated and mock-inoculated soybean root hairs using three different technologies: microarray hybridization, Illumina sequencing, and quantitative real-time reverse transcription-polymerase chain reaction. Together, a total of 1,973 soybean genes were differentially expressed with high significance during root hair infection, including orthologs of previously characterized root hair infection-related genes such as NFR5 and NIN. The regulation of 60 genes was confirmed by quantitative real-time reverse transcription-polymerase chain reaction. Our analysis also highlighted changes in the expression pattern of some homeologous and tandemly duplicated soybean genes, supporting their rapid specialization.


Nucleic Acids Research | 2001

The Medicago Genome Initiative: a model legume database

Callum J. Bell; Richard A. Dixon; Andrew D. Farmer; H. Raul Flores; Jeff T. Inman; Robert A. Gonzales; Maria J. Harrison; Nancy L. Paiva; Angela D. Scott; Jennifer W. Weller; Gregory D. May

The Medicago Genome Initiative (MGI) is a database of EST sequences of the model legume MEDICAGO: truncatula. The database is available to the public and has resulted from a collaborative research effort between the Samuel Roberts Noble Foundation and the National Center for Genome Resources to investigate the genome of M.truncatula. MGI is part of the greater integrated MEDICAGO: functional genomics program at the Noble Foundation (http://www.noble.org ), which is taking a global approach in studying the genetic and biochemical events associated with the growth, development and environmental interactions of this model legume. Our approach will include: large-scale EST sequencing, gene expression profiling, the generation of M.truncatula activation-tagged and promoter trap insertion mutants, high-throughput metabolic profiling, and proteome studies. These multidisciplinary information pools will be interfaced with one another to provide scientists with an integrated, holistic set of tools to address fundamental questions pertaining to legume biology. The public interface to the MGI database can be accessed at http://www.ncgr.org/research/mgi.

Collaboration


Dive into the Andrew D. Farmer's collaboration.

Top Co-Authors

Avatar

Gregory D. May

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajeev K. Varshney

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Joann Mudge

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvind K. Bharti

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trushar Shah

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Faye D. Schilkey

National Center for Genome Resources

View shared research outputs
Researchain Logo
Decentralizing Knowledge