Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joann Mudge is active.

Publication


Featured researches published by Joann Mudge.


Science Translational Medicine | 2011

Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing

Callum J. Bell; Darrell L. Dinwiddie; Neil Miller; Shannon L. Hateley; Elena E. Ganusova; Joann Mudge; Raymond J. Langley; Lu Zhang; Clarence Lee; Faye D. Schilkey; Vrunda Sheth; Jimmy E. Woodward; Heather E. Peckham; Gary P. Schroth; Ryan W. Kim; Stephen F. Kingsmore

Carrier testing for 448 severe childhood recessive diseases by next-generation sequencing has good predictive value and suggests that every individual carries about three disease mutations. Shining a Light on Comprehensive Carrier Screening Although diseases inherited in a Mendelian fashion are rare, together they account for about 20% of deaths in infancy. For Mendelian diseases that are recessive (of which there are more than 1000), screening before pregnancy (preconception screening) together with genetic counseling of those carrying a mutant allele could reduce the incidence of these diseases and the suffering that they incur. In the case of Tay-Sachs disease, an incurable neurodegenerative disease of infancy, preconception screening for disease gene mutations and genetic counseling among individuals of Ashkenazi descent has reduced the incidence of this tragic disease by 90%. However, simultaneous testing for many recessive childhood diseases is costly, so, to date, screening has included just a few diseases such as Tay-Sachs disease, cystic fibrosis, and familial dysautonomia. In a new study, Kingsmore and his colleagues have combined target gene capture and enrichment, next-generation sequencing, and sophisticated bioinformatic analysis to develop a platform capable of screening several hundred DNA samples simultaneously for 448 severe recessive diseases of childhood. They demonstrate that their method is sensitive, specific, and scalable in a research setting and that it should be straightforward to automate the process. The authors report that individuals in the general population carry an average of three recessive childhood disease mutations. They also discovered that about 10% of disease mutations in commonly used databases are incorrect, suggesting that disease mutation annotations in such databases should be carefully scrutinized. The authors predict that their screening test could be made faster and more cost-effective with the advent of microdroplet polymerase chain reaction and third-generation sequencing technologies. Their study provides a proof of concept that it should be possible to introduce preconception carrier screening for many recessive pediatric disease mutations as long as the disease genes are known. Many social, legal, and societal issues need to be addressed before preconception carrier screening can be made available for the general population, and cost is still a big consideration. However, this methodology could also be applied for comprehensive screening of newborns and would allow early diagnosis and intervention for a variety of Mendelian diseases. Although it may be some time before preconception carrier testing enters the community setting, physicians, patients, parents, and genetic counselors need to discuss the impact and implications of this new technology. Of 7028 disorders with suspected Mendelian inheritance, 1139 are recessive and have an established molecular basis. Although individually uncommon, Mendelian diseases collectively account for ~20% of infant mortality and ~10% of pediatric hospitalizations. Preconception screening, together with genetic counseling of carriers, has resulted in remarkable declines in the incidence of several severe recessive diseases including Tay-Sachs disease and cystic fibrosis. However, extension of preconception screening to most severe disease genes has hitherto been impractical. Here, we report a preconception carrier screen for 448 severe recessive childhood diseases. Rather than costly, complete sequencing of the human genome, 7717 regions from 437 target genes were enriched by hybrid capture or microdroplet polymerase chain reaction, sequenced by next-generation sequencing (NGS) to a depth of up to 2.7 gigabases, and assessed with stringent bioinformatic filters. At a resultant 160× average target coverage, 93% of nucleotides had at least 20× coverage, and mutation detection/genotyping had ~95% sensitivity and ~100% specificity for substitution, insertion/deletion, splicing, and gross deletion mutations and single-nucleotide polymorphisms. In 104 unrelated DNA samples, the average genomic carrier burden for severe pediatric recessive mutations was 2.8 and ranged from 0 to 7. The distribution of mutations among sequenced samples appeared random. Twenty-seven percent of mutations cited in the literature were found to be common polymorphisms or misannotated, underscoring the need for better mutation databases as part of a comprehensive carrier testing strategy. Given the magnitude of carrier burden and the lower cost of testing compared to treating these conditions, carrier screening by NGS made available to the general population may be an economical way to reduce the incidence of and ameliorate suffering associated with severe recessive childhood disorders.


Nature | 2010

Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis

Sergio E. Baranzini; Joann Mudge; Jennifer C. van Velkinburgh; Pouya Khankhanian; Irina Khrebtukova; Neil Miller; Lu Zhang; Andrew D. Farmer; Callum J. Bell; Ryan W. Kim; Gregory D. May; Jimmy E. Woodward; Stacy J. Caillier; Joseph P. McElroy; Refujia Gomez; Marcelo J. Pando; Leonda E. Clendenen; Elena E. Ganusova; Faye D. Schilkey; Thiruvarangan Ramaraj; Omar Khan; Jim J. Huntley; Shujun Luo; Pui-Yan Kwok; Thomas D. Wu; Gary P. Schroth; Jorge R. Oksenberg; Stephen L. Hauser; Stephen F. Kingsmore

Monozygotic or ‘identical’ twins have been widely studied to dissect the relative contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an autoimmune demyelinating disease and common cause of neurodegeneration and disability in young adults, disease discordance in monozygotic twins has been interpreted to indicate environmental importance in its pathogenesis. However, genetic and epigenetic differences between monozygotic twins have been described, challenging the accepted experimental model in disambiguating the effects of nature and nurture. Here we report the genome sequences of one MS-discordant monozygotic twin pair, and messenger RNA transcriptome and epigenome sequences of CD4+ lymphocytes from three MS-discordant, monozygotic twin pairs. No reproducible differences were detected between co-twins among ∼3.6 million single nucleotide polymorphisms (SNPs) or ∼0.2 million insertion-deletion polymorphisms. Nor were any reproducible differences observed between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, copy number variations, mRNA and genomic SNP and insertion-deletion genotypes, or the expression of ∼19,000 genes in CD4+ T cells. Only 2 to 176 differences in the methylation of ∼2 million CpG dinucleotides were detected between siblings of the three twin pairs, in contrast to ∼800 methylation differences between T cells of unrelated individuals and several thousand differences between tissues or between normal and cancerous tissues. In the first systematic effort to estimate sequence variation among monozygotic co-twins, we did not find evidence for genetic, epigenetic or transcriptome differences that explained disease discordance. These are the first, to our knowledge, female, twin and autoimmune disease individual genome sequences reported.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes

Steven B. Cannon; Lieven Sterck; Stephane Rombauts; Shusei Sato; Foo Cheung; Jérôme Gouzy; Xiaohong Wang; Joann Mudge; Jayprakash Vasdewani; Thomas Schiex; Manuel Spannagl; Erin Monaghan; Christine Nicholson; Sean Humphray; Heiko Schoof; Klaus F. X. Mayer; Jane Rogers; Francis Quetier; Giles E. D. Oldroyd; Frédéric Debellé; Douglas R. Cook; Ernest F. Retzel; Bruce A. Roe; Christopher D. Town; Satoshi Tabata; Yves Van de Peer; Nevin D. Young

Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago–Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20–30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar).


Molecular Ecology | 2012

Genome-wide association genetics of an adaptive trait in lodgepole pine

Thomas L. Parchman; Zachariah Gompert; Joann Mudge; Faye D. Schilkey; Craig W. Benkman; C. Alex Buerkle

Pine cones that remain closed and retain seeds until fire causes the cones to open (cone serotiny) represent a key adaptive trait in a variety of pine species. In lodgepole pine, there is substantial geographical variation in serotiny across the Rocky Mountain region. This variation in serotiny has evolved as a result of geographically divergent selection, with consequences that extend to forest communities and ecosystems. An understanding of the genetic architecture of this trait is of interest owing to the wide‐reaching ecological consequences of serotiny and also because of the repeated evolution of the trait across the genus. Here, we present and utilize an inexpensive and time‐effective method for generating population genomic data. The method uses restriction enzymes and PCR amplification to generate a library of fragments that can be sequenced with a high level of multiplexing. We obtained data for more than 95 000 single nucleotide polymorphisms across 98 serotinous and nonserotinous lodgepole pines from three populations. We used a Bayesian generalized linear model (GLM) to test for an association between genotypic variation at these loci and serotiny. The probability of serotiny varied by genotype at 11 loci, and the association between genotype and serotiny at these loci was consistent in each of the three populations of pines. Genetic variation across these 11 loci explained 50% of the phenotypic variation in serotiny. Our results provide a first genome‐wide association map of serotiny in pines and demonstrate an inexpensive and efficient method for generating population genomic data.


PLOS Neglected Tropical Diseases | 2010

C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response

Doug E. Brackney; Jaclyn C. Scott; Fumihiko Sagawa; Jimmy E. Woodward; Neil Miller; Faye D. Schilkey; Joann Mudge; Jeffrey Wilusz; Ken E. Olson; Carol D. Blair; Gregory D. Ebel

Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the hosts RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula

Antoine Branca; Timothy Paape; Peng Zhou; Roman Briskine; Andrew D. Farmer; Joann Mudge; Arvind K. Bharti; Jimmy E. Woodward; Gregory D. May; Laurent Gentzbittel; Cécile Ben; Roxanne Denny; Michael J. Sadowsky; Joëlle Ronfort; Thomas Bataillon; Nevin D. Young; Peter Tiffin

Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume–rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soybean (Glycine max) and exhibits patterns of LD and recombination similar to Arabidopsis thaliana. The population-scaled recombination rate is approximately one-third of the mutation rate, consistent with expectations for a species with a high selfing rate. Linkage disequilibrium, however, is not extensive, and therefore, the low recombination rate is likely not a major constraint to adaptation. Nucleotide diversity in 100-kb windows was negatively correlated with gene density, which is expected if diversity is shaped by selection acting against slightly deleterious mutations. Among putative coding regions, members of four gene families harbor significantly higher diversity than the genome-wide average. Three of these families are involved in resistance against pathogens; one of these families, the nodule-specific, cysteine-rich gene family, is specific to the galegoid legumes and is involved in control of rhizobial differentiation. The more than 3 million SNPs that we detected, approximately one-half of which are present in more than one accession, are a valuable resource for genome-wide association mapping of genes responsible for phenotypic diversity in legumes, especially traits associated with symbiosis and nodulation.


Current Opinion in Plant Biology | 2003

Legume genomes: more than peas in a pod.

Nevin D. Young; Joann Mudge; T. H. Noel Ellis

A growing array of sequence-based tools is helping to reveal the organization, evolution and syntenic relationships of legume genomes. The results indicate that legumes form a coherent taxonomic group with frequent and widespread macro- and microsynteny. This is good news for two model legume systems, Medicago truncatula and Lotus japonicus. Indeed, both models have recently been used to clone and characterize genes for nodulation-related receptors that were originally described in legumes with more complex genomes. Studies of legume genomes have also provided insight into genome size, gene clustering, genome duplications and repetitive elements. To understand legume genomes better, it will be necessary to develop tools for studying under-represented taxa beyond the relatively small group of economically important species that have been examined so far.


Molecular Plant-microbe Interactions | 2012

Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

Kurt Lamour; Joann Mudge; Daniel Gobena; Oscar Hurtado-Gonzales; Jeremy Schmutz; Alan Kuo; Neil Miller; Brandon J. Rice; Sylvain Raffaele; Liliana M. Cano; Arvind K. Bharti; Ryan S. Donahoo; Sabra Finley; Edgar Huitema; Jon Hulvey; Darren Platt; Asaf Salamov; Alon Savidor; Rahul Sharma; Remco Stam; Dylan Storey; Marco Thines; Joe Win; Brian J. Haas; Darrell L. Dinwiddie; Jerry Jenkins; James Knight; Jason Affourtit; Cliff Han; Olga Chertkov

The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30% of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.


Nature Reviews Drug Discovery | 2008

Genome-wide association studies: progress and potential for drug discovery and development

Stephen F. Kingsmore; Ingrid E. Lindquist; Joann Mudge; Damian Dg Gessler; William D. Beavis

Although genetic studies have been critically important for the identification of therapeutic targets in Mendelian disorders, genetic approaches aiming to identify targets for common, complex diseases have traditionally had much more limited success. However, during the past year, a novel genetic approach — genome-wide association (GWA) — has demonstrated its potential to identify common genetic variants associated with complex diseases such as diabetes, inflammatory bowel disease and cancer. Here, we highlight some of these recent successes, and discuss the potential for GWA studies to identify novel therapeutic targets and genetic biomarkers that will be useful for drug discovery, patient selection and stratification in common diseases.


PLOS ONE | 2008

Genomic Convergence Analysis of Schizophrenia: mRNA Sequencing Reveals Altered Synaptic Vesicular Transport in Post-Mortem Cerebellum

Joann Mudge; Neil Miller; Irina Khrebtukova; Ingrid E. Lindquist; Gregory D. May; Jim J. Huntley; Shujun Luo; Lu Zhang; Jennifer C. van Velkinburgh; Andrew D. Farmer; Sharon Lewis; William D. Beavis; Faye D. Schilkey; Selene M. Virk; C. Forrest Black; M. Kathy Myers; Lar C. Mader; Raymond J. Langley; John P Utsey; Ryan W. Kim; Rosalinda C. Roberts; Sat Kirpal Khalsa; Meredith M. Garcia; Victoria Ambriz-Griffith; Richard Harlan; Wendy Czika; Stanton L. Martin; Russell D. Wolfinger; Nora I. Perrone-Bizzozero; Gary P. Schroth

Schizophrenia (SCZ) is a common, disabling mental illness with high heritability but complex, poorly understood genetic etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read, shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200 transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical, sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls. Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-represented among differentially expressed genes. Twenty three genes with altered expression and involvement in presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for dysfunction in cerebellar cortex in SCZ.

Collaboration


Dive into the Joann Mudge's collaboration.

Top Co-Authors

Avatar

Thiruvarangan Ramaraj

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew D. Farmer

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar

Anitha Sundararajan

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar

Ingrid E. Lindquist

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar

Faye D. Schilkey

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernest F. Retzel

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar

Gregory D. May

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar

Peter Tiffin

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge