Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew D. Friend is active.

Publication


Featured researches published by Andrew D. Friend.


Nature | 2005

Europe-wide reduction in primary productivity caused by the heat and drought in 2003

Ph. Ciais; Markus Reichstein; Nicolas Viovy; A. Granier; Jérôme Ogée; Vincent Allard; Marc Aubinet; Nina Buchmann; Chr. Bernhofer; Arnaud Carrara; F. Chevallier; N. de Noblet; Andrew D. Friend; Pierre Friedlingstein; Thomas Grünwald; Bernard Heinesch; P. Keronen; Alexander Knohl; Gerhard Krinner; Denis Loustau; Giovanni Manca; Giorgio Matteucci; F. Miglietta; Jean-Marc Ourcival; D. Papale; Kim Pilegaard; Serge Rambal; Günther Seufert; Jean-François Soussana; M. J. Sanz

Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr-1) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europes primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2

Andrew D. Friend; Wolfgang Lucht; Tim Tito Rademacher; Rozenn Keribin; Richard A. Betts; P. Cadule; Philippe Ciais; Douglas B. Clark; Rutger Dankers; Pete Falloon; Akihiko Ito; R. Kahana; Axel Kleidon; Mark R. Lomas; Kazuya Nishina; Sebastian Ostberg; Ryan Pavlick; Philippe Peylin; Sibyll Schaphoff; Nicolas Vuichard; Lila Warszawski; Andy Wiltshire; F. Ian Woodward

Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510–758 ppm of CO2), vegetation carbon increases by 52–477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.


Global Biogeochemical Cycles | 2010

Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 1. Model description, site‐scale evaluation, and sensitivity to parameter estimates

Sönke Zaehle; Andrew D. Friend

[1] Nitrogen (N) availability plays a key role in terrestrial biosphere dynamics. To understand and quantify the role of terrestrial N in the Earth system, we developed an advanced terrestrial biogeochemical model O-CN that mechanistically couples terrestrial energy, water, carbon, and nitrogen fluxes in terrestrial ecosystems. We evaluate this new model against observations from intensive forest monitoring plots at temperate and boreal locations in Europe. O-CN simulates realistic foliage N concentrations and N cycling rates and reproduces observed diurnal and seasonal cycles of C fluxes as well as observed gradients in vegetation productivity with N availability for the forest sites studied. A sensitivity test reveals that these results are reasonably robust against uncertainties in model parameter estimates. Using this model we quantify the likely contribution of anthropogenic N deposition to present ecosystem C sequestration as 36 (range: 2-79) g C g ―1 N in agreement with ecosystem manipulation studies.


Climate Dynamics | 2007

Climate simulations for 1880–2003 with GISS modelE

James E. Hansen; Makiko Sato; Reto Ruedy; Pushker A. Kharecha; Andrew A. Lacis; Ron L. Miller; Larissa Nazarenko; K. Lo; Gavin A. Schmidt; Gary L. Russell; Igor Aleinov; Susanne E. Bauer; E. Baum; Brian Cairns; V. M. Canuto; Mark A. Chandler; Y. Cheng; Armond Cohen; A. D. Del Genio; G. Faluvegi; Eric L. Fleming; Andrew D. Friend; Timothy M. Hall; Charles H. Jackman; Jeffrey Jonas; Maxwell Kelley; Nancy Y. Kiang; D. Koch; Gordon Labow; J. Lerner

We carry out climate simulations for 1880–2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880–2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies include unrealistically weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. Greatest uncertainties in the forcings are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds.


Science | 2015

Genomic evidence for the Pleistocene and recent population history of Native Americans

Maanasa Raghavan; Matthias Steinrücken; Kelley Harris; Stephan Schiffels; Simon Rasmussen; Michael DeGiorgio; Anders Albrechtsen; Cristina Valdiosera; María C. Ávila-Arcos; Anna-Sapfo Malaspinas; Anders Eriksson; Ida Moltke; Mait Metspalu; Julian R. Homburger; Jeffrey D. Wall; Omar E. Cornejo; J. Víctor Moreno-Mayar; Thorfinn Sand Korneliussen; Tracey Pierre; Morten Rasmussen; Paula F. Campos; Peter de Barros Damgaard; Morten E. Allentoft; John Lindo; Ene Metspalu; Ricardo Rodríguez-Varela; Josefina Mansilla; Celeste Henrickson; Andaine Seguin-Orlando; Helena Malmström

Genetic history of Native Americans Several theories have been put forth as to the origin and timing of when Native American ancestors entered the Americas. To clarify this controversy, Raghavan et al. examined the genomic variation among ancient and modern individuals from Asia and the Americas. There is no evidence for multiple waves of entry or recurrent gene flow with Asians in northern populations. The earliest migrations occurred no earlier than 23,000 years ago from Siberian ancestors. Amerindians and Athabascans originated from a single population, splitting approximately 13,000 years ago. Science, this issue 10.1126/science.aab3884 Genetic variation within ancient and extant Native American populations informs on their migration into the Americas. INTRODUCTION The consensus view on the peopling of the Americas is that ancestors of modern Native Americans entered the Americas from Siberia via the Bering Land Bridge and that this occurred at least ~14.6 thousand years ago (ka). However, the number and timing of migrations into the Americas remain controversial, with conflicting interpretations based on anatomical and genetic evidence. RATIONALE In this study, we address four major unresolved issues regarding the Pleistocene and recent population history of Native Americans: (i) the timing of their divergence from their ancestral group, (ii) the number of migrations into the Americas, (iii) whether there was ~15,000 years of isolation of ancestral Native Americans in Beringia (Beringian Incubation Model), and (iv) whether there was post-Pleistocene survival of relict populations in the Americas related to Australo-Melanesians, as suggested by apparent differences in cranial morphologies between some early (“Paleoamerican”) remains and those of more recent Native Americans. We generated 31 high-coverage modern genomes from the Americas, Siberia, and Oceania; 23 ancient genomic sequences from the Americas dating between ~0.2 and 6 ka; and SNP chip genotype data from 79 present-day individuals belonging to 28 populations from the Americas and Siberia. The above data sets were analyzed together with published modern and ancient genomic data from worldwide populations, after masking some present-day Native Americans for recent European admixture. RESULTS Using three different methods, we determined the divergence time for all Native Americans (Athabascans and Amerindians) from their Siberian ancestors to be ~20 ka, and no earlier than ~23 ka. Furthermore, we dated the divergence between Athabascans (northern Native American branch, together with northern North American Amerindians) and southern North Americans and South and Central Americans (southern Native American branch) to be ~13 ka. Similar divergence times from East Asian populations and a divergence time between the two branches that is close in age to the earliest well-established archaeological sites in the Americas suggest that the split between the branches occurred within the Americas. We additionally found that several sequenced Holocene individuals from the Americas are related to present-day populations from the same geographical regions, implying genetic continuity of ancient and modern populations in some parts of the Americas over at least the past 8500 years. Moreover, our results suggest that there has been gene flow between some Native Americans from both North and South America and groups related to East Asians and Australo-Melanesians, the latter possibly through an East Asian route that might have included ancestors of modern Aleutian Islanders. Last, using both genomic and morphometric analyses, we found that historical Native American groups such as the Pericúes and Fuego-Patagonians were not “relicts” of Paleoamericans, and hence, our results do not support an early migration of populations directly related to Australo-Melanesians into the Americas. CONCLUSION Our results provide an upper bound of ~23 ka on the initial divergence of ancestral Native Americans from their East Asian ancestors, followed by a short isolation period of no more than ~8000 years, and subsequent entrance and spread across the Americas. The data presented are consistent with a single-migration model for all Native Americans, with later gene flow from sources related to East Asians and, indirectly, Australo-Melanesians. The single wave diversified ~13 ka, likely within the Americas, giving rise to the northern and southern branches of present-day Native Americans. Population history of present-day Native Americans. The ancestors of all Native Americans entered the Americas as a single migration wave from Siberia (purple) no earlier than ~23 ka, separate from the Inuit (green), and diversified into “northern” and “southern” Native American branches ~13 ka. There is evidence of post-divergence gene flow between some Native Americans and groups related to East Asians/Inuit and Australo-Melanesians (yellow). How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative “Paleoamerican” relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.


Global Environmental Change-human and Policy Dimensions | 1999

Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment

Andrew White; Melvin G.R. Cannell; Andrew D. Friend

Climate output from the UK Hadley Centre’s HadCM2 and HadCM3 experiments for the period 1860 to 2100, with IS92a greenhouse gas forcing, together with predicted patterns of N deposition and increasing CO 2 , were input (o%ine) to the dynamic vegetation model, Hybrid v4.1 (Friend et al., 1997; Friend and White, 1999). This model represents biogeochemical, biophysical and biogeographical processes, coupling the carbon, nitrogen and water cycles on a sub-daily timestep, simulating potential vegetation and transient changes in annual growth and competition between eight generalized plant types in response to climate. Global vegetation carbon was predicted to rise from about 600 to 800 PgC (or to 650 PgC for HadCM3) while the soil carbon pool of about 1100 PgC decreased by about 8%. By the 2080s, climate change caused a partial loss of Amazonian rainforest, C 4 grasslands and temperate forest in areas of southern Europe and eastern USA, but an expansion in the boreal forest area. These changes were accompanied by a decrease in net primary productivity (NPP) of vegetation in many tropical areas, southern Europe and eastern USA (in response to warming and a decrease in rainfall), but an increase in NPP of boreal forests. Global NPP increased from 45 to 50 PgC y~1 in the 1990s to about 65 PgC y~1 in the 2080s (about 58 PgC y~1 for HadCM3). Global net ecosystem productivity (NEP) increased from about 1.3 PgC y~1 in the 1990s to about 3.6 PgC y~1 in the 2030s and then declined to zero by 2100 owing to a loss of carbon from declining forests in the tropics and at warm temperate latitudes * despite strengthening of the carbon sink at northern high latitudes. HadCM3 gave a more erratic temporal evolution of NEP than HadCM2, with a dramatic collapse in NEP in the 2050s. ( 1999 Elsevier Science Ltd. All rights reserved.


Ecology | 1993

A PHYSIOLOGY-BASED GAP MODEL OF FOREST DYNAMICS'

Andrew D. Friend; H. H. Schugart; Steven W. Running

A computer model of forest growth and ecosystem processes is presented. The model, HYBRID, is derived from a forest gap model, an ecosystem process model, and a photosynthesis model. In HYBRID individual trees fix and respire carbon, and lose water daily; carbon partitioning occurs at the end of each year. HYBRID obviates many of the limitations of both gap models and ecosystem process models. The growth equations of gap models are replaced with functionally realistic equations and processes for carbon fixation and partitioning, resulting in a dynamic model in which competition and physiology play important roles. The model is used to predict ecosystem processes and dynamics in oak forests in Knoxville, Tennessee (USA), and pine forests in Missoula, Montana (USA) between the years 1910 and 1986. The simulated growth of individual trees and the overall ecosystem- level processes are very similar to observations. A sensitivity analysis performed for these sites showed that predictions of net primary productivity by HYBRID are most sensitive to the ratio of CO2 partial pressure between inside the leaf and the air, relative humidity, ambient CO2 partial pressure, precipitation, air temperature, tree allometry, respiration parameters, site soil water capacity, and a carbon storage parameter.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Multisectoral climate impact hotspots in a warming world

Franziska Piontek; Christoph Müller; Thomas A. M. Pugh; Douglas B. Clark; Delphine Deryng; Joshua Elliott; Felipe de Jesus Colón González; Martina Flörke; Christian Folberth; Wietse Franssen; Katja Frieler; Andrew D. Friend; Simon N. Gosling; Deborah Hemming; Nikolay Khabarov; Hyungjun Kim; Mark R. Lomas; Yoshimitsu Masaki; Matthias Mengel; Andrew P. Morse; Kathleen Neumann; Kazuya Nishina; Sebastian Ostberg; Ryan Pavlick; Alex C. Ruane; Jacob Schewe; Erwin Schmid; Tobias Stacke; Qiuhong Tang; Zachary Tessler

The impacts of global climate change on different aspects of humanity’s diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980–2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Late Pleistocene climate change and the global expansion of anatomically modern humans

Anders Eriksson; Lia Betti; Andrew D. Friend; Stephen J. Lycett; Joy S. Singarayer; Noreen von Cramon-Taubadel; Paul J. Valdes; Francois Balloux; Andrea Manica

The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317–1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter–gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence.


Journal of Climate | 2005

Land Surface Model Development for the GISS GCM: Effects of Improved Canopy Physiology on Simulated Climate

Andrew D. Friend; Nancy Y. Kiang

Abstract A new physiology-based model of canopy stomatal conductance and photosynthesis is described and included in the latest version of the Goddard Institute for Space Studies (GISS) GCM, ModelE1. The submodel includes responses to atmospheric humidity and CO2 concentration, responses missing from previous GISS GCM land surface schemes. Measurements of moisture, energy, and CO2 fluxes over four vegetation types are used to test and calibrate the submodel. Photosynthetic leaf N is calibrated for each vegetation type from the flux measurements. The new submodel results in surface cooling over many regions previously too warm. Some warm biases of over 2°C are cooled by more than 0.5°C, including over central Eurasia, South America, the western United States, and Australia. In addition, some regions that were previously too cool are warmed, such as northern Eurasia and the Tibetan Plateau. A number of precipitation biases are also reduced, particularly over South America (by up to 1 mm day−1) and the ocean...

Collaboration


Dive into the Andrew D. Friend's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuya Nishina

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katja Frieler

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Sibyll Schaphoff

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Lucht

Potsdam Institute for Climate Impact Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge