Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Devitt is active.

Publication


Featured researches published by Andrew Devitt.


Immunology | 2004

The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically?

Christopher D. Gregory; Andrew Devitt

Macrophages play important roles in the clearance of dying and dead cells. Typically, and perhaps simplistically, they are viewed as the professional phagocytes of apoptotic cells. Clearance by macrophages of cells undergoing apoptosis is a non‐phlogistic phenomenon which is often associated with actively anti‐inflammatory phagocyte responses. By contrast, macrophage responses to necrotic cells, including secondarily necrotic cells derived from uncleared apoptotic cells, are perceived as proinflammatory. Indeed, persistence of apoptotic cells as a result of defective apoptotic‐cell clearance has been found to be associated with the pathogenesis of autoimmune disease. Here we review the mechanisms by which macrophages interact with, and respond to, apoptotic cells. We suggest that macrophages are especially important in clearing cells at sites of histologically visible, high‐rate apoptosis and that, otherwise, apoptotic cells are removed largely by non‐macrophage neighbours. We challenge the view that necrotic cells, including persistent apoptotic cells are, of necessity, proinflammatory and immunostimulatory and suggest that, under appropriate circumstances, persistent apoptotic cells can provide a prolonged anti‐inflammatory stimulus.


Journal of the American College of Cardiology | 2013

Monocytes in coronary artery disease and atherosclerosis: where are we now?

Angie Ghattas; Helen R. Griffiths; Andrew Devitt; Gregory Y.H. Lip; Eduard Shantsila

Despite improvements in interventional and pharmacological therapy of atherosclerotic disease, it is still the leading cause of death in the developed world. Hence, there is a need for further development of effective therapeutic approaches. This requires better understanding of the molecular mechanisms and pathophysiology of the disease. Atherosclerosis has long been identified as having an inflammatory component contributing to its pathogenesis, whereas the available therapy primarily targets hyperlipidemia and prevention of thrombosis. Notwithstanding a pleotropic anti-inflammatory effect to some therapies, such as acetyl salicylic acid and the statins, none of the currently approved medicines for management of either stable or complicated atherosclerosis has inflammation as a primary target. Monocytes, as representatives of the innate immune system, play a major role in the initiation, propagation, and progression of atherosclerosis from a stable to an unstable state. Experimental data support a role of monocytes in acute coronary syndromes and in outcome post-infarction; however, limited research has been done in humans. Analysis of expression of various cell surface receptors allows characterization of the different monocyte subsets phenotypically, whereas downstream assessment of inflammatory pathways provides an insight into their activity. In this review we discuss the functional role of monocytes and their different subpopulations in atherosclerosis, acute coronary syndromes, cardiac healing, and recovery with an aim of critical evaluation of potential future therapeutic targets in atherosclerosis and its complications. We will also discuss technical difficulties of delineating different monocyte subpopulations, understanding their differentiation potential and function.


Journal of Leukocyte Biology | 2011

The innate immune system and the clearance of apoptotic cells

Andrew Devitt; Lindsay J. Marshall

Removal of unwanted, effete, or damaged cells through apoptosis, an active cell death culminating in phagocytic removal of cell corpses, is an important process throughout the immune system in development, control, and homeostasis. For example, neutrophil apoptosis is central to the resolution of acute inflammation, whereas autoreactive and virus‐infected cells are similarly deleted. The AC removal process functions not only to remove cell corpses but further, to control inappropriate immune responses so that ACs are removed in an anti‐inflammatory manner. Such ″silent″ clearance is mediated by the innate immune system via polarized monocyte/macrophage populations that use a range of PRRs and soluble molecules to promote binding and phagocytosis of ACs. Additionally, attractive signals are released from dying cells to recruit phagocytes to sites of death. Here, we review the molecular mechanisms associated with innate immune removal of and responses to ACs and outline how these may impact on tissue homeostasis and age‐associated pathology (e.g., cardiovascular disease). Furthermore, we discuss how an aging innate immune system may contribute to the inflammatory consequences of aging and why the study of an aging immune system may be a useful path to advance characterization of mechanisms mediating effective AC clearance.


Cell Death & Differentiation | 2003

CD14-dependent clearance of apoptotic cells by human macrophages: the role of phosphatidylserine.

Andrew Devitt; S. Pierce; Ceri Oldreive; W.H. Shingler; Christopher D. Gregory

AbstractApoptotic-cell clearance is dependent on several macrophage surface molecules, including CD14. Phosphatidylserine (PS) becomes externalised during apoptosis and participates in the clearance process through its ability to bind to a novel receptor, PS-R. CD14 has the proven ability to bind phospholipids and may function as an alternative receptor for the externalised PS of apoptotic cells. Here we demonstrate that CD14 does not function preferentially as a PS receptor in apoptotic-cell clearance. Compared with phosphatidylcholine and phosphatidylethanolamine, PS was the least active phospholipid binding to human monocyte-derived macrophages and showed no specificity for soluble or membrane-anchored CD14. Significantly, PS-containing liposomes failed to inhibit CD14-dependent uptake of apoptotic cells by macrophages. PS exposure was, however, found to be insufficient for either CD14-dependent or CD14-independent apoptotic-cell uptake by phagocytes. The additional features that enable apoptotic-cell clearance are derived from mechanisms that can be divorced temporally from those responsible for the morphological features of apoptosis.


Annals of Medicine | 2010

The role of monocytes in atherosclerotic coronary artery disease

Burak Pamukcu; Gregory Yh Lip; Andrew Devitt; Helen R. Griffiths; Eduard Shantsila

Abstract Inflammation plays a key role in the pathogenesis of atherosclerosis. The more we discover about the molecular pathways involved in atherosclerosis, the more we perceive the importance of monocytes in this process. Circulating monocytes are components of innate immunity, and many pro-inflammatory cytokines and adhesion molecules facilitate their adhesion and migration to the vascular endothelial wall. In addition to the accumulation of lipids and formation of atherogenic ‘foam’ cells, monocytes may promote atherosclerotic plaque growth by production of inflammatory cytokines, matrix metalloproteinases, and reactive oxidative species. However, the contribution of monocytes to atherogenesis is not only limited to tissue destruction. Monocyte subsets are also involved in intraplaque angiogenesis and tissue reparative processes. The aim of this overview is to discuss the mechanisms of monocyte activation, the pivotal role and importance of activated monocytes in atherosclerotic coronary artery disease, their implication in the development of acute coronary events, and their potential in cardiovascular reparative processes such angiogenesis.


Journal of Controlled Release | 2011

The vesicle size of DDA: TDB liposomal adjuvants plays a role in the cell-mediated immune response but has no significant effect on antibody production

Malou Henriksen-Lacey; Andrew Devitt; Yvonne Perrie

The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 μm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-γ cytokine production from splenocytes and higher IL-1β at the site of injection.


Redox biology | 2014

Redox regulation of protein damage in plasma

Helen R. Griffiths; Irundika H.K. Dias; Rachel S. Willetts; Andrew Devitt

The presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However, advances in analytical techniques using mass spectrometry and immuno-affinity purification methods, have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific sites is now being characterised. The damaging reactive species that cause protein modifications in plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase (MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be caused by oxidized lipids and glucose autooxidation. In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites.


Cell Death & Differentiation | 2012

Apoptotic cell-derived ICAM-3 promotes both macrophage chemoattraction to and tethering of apoptotic cells.

Elizabeth E. Torr; D.H. Gardner; Leanne Thomas; D.M. Goodall; Anne Bielemeier; Rachel S. Willetts; Helen R. Griffiths; Lindsay J. Marshall; Andrew Devitt

A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within the complex sequential processes that result in phagocytosis and degradation of apoptotic cells. Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance, although its precise role in the clearance process is ill defined. The main objective of this work is to further characterise the function of ICAM-3 in the removal of apoptotic cells. Using a range of novel anti-ICAM-3 monoclonal antibodies (mAbs), including one (MA4) that blocks apoptotic cell clearance by macrophages, alongside apoptotic human leukocytes that are normal or deficient for ICAM-3, we demonstrate that ICAM-3 promotes a domain 1–2-dependent tethering interaction with phagocytes. Furthermore, we demonstrate an apoptosis-associated reduction in ICAM-3 that results from release of ICAM-3 within microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest that apoptotic cell-derived microparticles bearing ICAM-3 promote macrophage chemoattraction to sites of leukocyte cell death and that ICAM-3 mediates subsequent cell corpse tethering to macrophages. The defined function of ICAM-3 in these processes and profound defect in chemotaxis noted to ICAM-3-deficient microparticles suggest that ICAM-3 may be an important adhesion molecule involved in chemotaxis to apoptotic human leukocytes.


FEBS Letters | 2004

Gene delivery of the elastase inhibitor elafin protects macrophages from neutrophil elastase-mediated impairment of apoptotic cell recognition.

Peter Henriksen; Andrew Devitt; Yuri Kotelevtsev; Jean-Michel Sallenave

The resolution of inflammation is dependent on recognition and phagocytic removal of apoptotic cells by macrophages. Receptors for apoptotic cells are sensitive to degradation by human neutrophil elastase (HNE). We show in the present study that HNE cleaves macrophage cell surface CD14 and in so doing, reduces phagocytic recognition of apoptotic lymphocytic cells (Mutu 1). Using an improved method of adenovirus‐mediated transfection of macrophages with the HNE inhibitor elafin, we demonstrate that elafin overexpression prevents CD14 cleavage and restores apoptotic cell recognition by macrophages. This approach of genetic modification of macrophages could be used to restore apoptotic cell recognition in inflammatory conditions.


mAbs | 2009

Inhibitory effects of persistent apoptotic cells on monoclonal antibody production in vitro: simple removal of non-viable cells improves antibody productivity by hybridoma cells in culture

Christopher D. Gregory; John D. Pound; Andrew Devitt; Megan Wilson-Jones; Parthasarathi Ray; Ruth J. Murray

Cells undergoing apoptosis in vivo are rapidly detected and cleared by phagocytes. Swift recognition and removal of apoptotic cells is important for normal tissue homeostasis and failure in the underlying clearance mechanisms has pathological consequences associated with inflammatory and auto-immune diseases. Cell cultures in vitro usually lack the capacity for removal of non-viable cells because of the absence of phagocytes and, as such, fail to emulate the healthy in vivo micro-environment from which dead cells are absent. While a key objective in cell culture is to maintain viability at maximal levels, cell death is unavoidable and non-viable cells frequently contaminate cultures in significant numbers. Here we show that the presence of apoptotic cells in monoclonal antibody-producing hybridoma cultures has markedly detrimental effects on antibody productivity. Removal of apoptotic hybridoma cells by macrophages at the time of seeding resulted in 100% improved antibody productivity that was, surprisingly to us, most pronounced late on in the cultures. Furthermore, we were able to recapitulate this effect using novel super-paramagnetic Dead-Cert™Nanoparticles to remove non-viable cells simply and effectively at culture seeding. These results (1) provide direct evidence that apoptotic cells have a profound influence on their non-phagocytic neighbours in culture and (2) demonstrate the effectiveness of a simple dead-cell removal strategy for improving antibody manufacture in vitro.

Collaboration


Dive into the Andrew Devitt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge