Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew E. Arrant is active.

Publication


Featured researches published by Andrew E. Arrant.


Journal of Experimental Medicine | 2014

Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD

Michael E. Ward; Alice Taubes; Robert Chen; Bruce L. Miller; Chantelle F. Sephton; Jeffrey M. Gelfand; S. Sakura Minami; John Boscardin; Lauren Herl Martens; William W. Seeley; Gang Yu; Joachim Herz; Anthony J. Filiano; Andrew E. Arrant; Erik D. Roberson; Timothy W. Kraft; Robert V. Farese; Ari J. Green; Li Gan

Ward et al. report retinal thinning in humans with progranulin mutations that precedes dementia onset, and an age-dependent retinal neurodegenerative phenotype in progranulin null mice. Nuclear depletion of TDP-43 precedes retinal neuronal loss and is accompanied by reduced GTPase Ran, with overexpression of Ran restoring nuclear TDP-43 and neuronal survival.


Brain | 2017

Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia

Andrew E. Arrant; Anthony J. Filiano; Daniel E. Unger; Allen H. Young; Erik D. Roberson

Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/- mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/- mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/- mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/- mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function.


The Journal of Neuroscience | 2018

Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis

Andrew E. Arrant; Vincent C. Onyilo; Daniel E. Unger; Erik D. Roberson

Loss-of-function mutations in progranulin, a lysosomal glycoprotein, cause neurodegenerative disease. Progranulin haploinsufficiency causes frontotemporal dementia (FTD) and complete progranulin deficiency causes CLN11 neuronal ceroid lipofuscinosis (NCL). Progranulin replacement is a rational therapeutic strategy for these disorders, but there are critical unresolved mechanistic questions about a progranulin gene therapy approach, including its potential to reverse existing pathology. Here, we address these issues using an AAV vector (AAV-Grn) to deliver progranulin in Grn−/− mice (both male and female), which model aspects of NCL and FTD pathology, developing lysosomal dysfunction, lipofuscinosis, and microgliosis. We first tested whether AAV-Grn could improve preexisting pathology. Even with treatment after onset of pathology, AAV-Grn reduced lipofuscinosis in several brain regions of Grn−/− mice. AAV-Grn also reduced microgliosis in brain regions distant from the injection site. AAV-expressed progranulin was only detected in neurons, not in microglia, indicating that the microglial activation in progranulin deficiency can be improved by targeting neurons and thus may be driven at least in part by neuronal dysfunction. Even areas with sparse transduction and almost undetectable progranulin showed improvement, indicating that low-level replacement may be sufficiently effective. The beneficial effects of AAV-Grn did not require progranulin binding to sortilin. Finally, we tested whether AAV-Grn improved lysosomal function. AAV-derived progranulin was delivered to the lysosome, ameliorated the accumulation of LAMP-1 in Grn−/− mice, and corrected abnormal cathepsin D activity. These data shed light on progranulin biology and support progranulin-boosting therapies for NCL and FTD due to GRN mutations. SIGNIFICANCE STATEMENT Heterozygous loss-of-function progranulin (GRN) mutations cause frontotemporal dementia (FTD) and homozygous mutations cause neuronal ceroid lipofuscinosis (NCL). Here, we address several mechanistic questions about the potential of progranulin gene therapy for these disorders. GRN mutation carriers with NCL or FTD exhibit lipofuscinosis and Grn−/− mouse models develop a similar pathology. AAV-mediated progranulin delivery reduced lipofuscinosis in Grn−/− mice even after the onset of pathology. AAV delivered progranulin only to neurons, not microglia, but improved microgliosis in several brain regions, indicating cross talk between neuronal and microglial pathology. Its beneficial effects were sortilin independent. AAV-derived progranulin was delivered to lysosomes and corrected lysosomal abnormalities. These data provide in vivo support for the efficacy of progranulin-boosting therapies for FTD and NCL.


Genes, Brain and Behavior | 2016

Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

Andrew E. Arrant; Anthony J. Filiano; Brian A. Warmus; A. M. Hall; Erik D. Roberson

Loss‐of‐function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin‐insufficient mice, both Grn+/− and Grn−/−, are used as models of FTD due to GRN mutations, with Grn+/− mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn+/− mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn−/− mice. In this study, we investigated how the tube test phenotype of progranulin‐insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn+/− mice: at 6–8 months, Grn+/− mice were more dominant than wild‐type littermates, while after 9 months of age, Grn+/− mice were less dominant. In contrast, Grn−/− mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn+/− mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6–9 months, Grn+/− mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9–16 months Grn+/− mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn+/− mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior.


eneuro | 2015

Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice

Andrew E. Arrant; Aashka R. Patel; Erik D. Roberson

Abstract Loss-of-function mutations in progranulin (GRN) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous (Grn+/− ) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn+/− mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn−/− mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn−/− mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels.


Nature Medicine | 2014

MicroRNA-124 modulates social behavior in frontotemporal dementia

Andrew E. Arrant; Erik D. Roberson

Frontotemporal dementia (FTD) is a neurodegenerative disease that causes social dysfunction and other symptoms. A new study suggests that social dysfunction in FTD is due to decreased microRNA-124 expression and resulting changes in glutamate receptor composition in the prefrontal cortex.


Molecular Neurodegeneration | 2018

Partial Tmem106b reduction does not correct abnormalities due to progranulin haploinsufficiency

Andrew E. Arrant; Alexandra M. Nicholson; Xiaolai Zhou; Rosa Rademakers; Erik D. Roberson

BackgroundLoss of function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD). Progranulin is a secreted glycoprotein that localizes to lysosomes and is critical for proper lysosomal function. Heterozygous GRN mutation carriers develop FTD with TDP-43 pathology and exhibit signs of lysosomal dysfunction in the brain, with increased levels of lysosomal proteins and lipofuscin accumulation. Homozygous GRN mutation carriers develop neuronal ceroid lipofuscinosis (NCL), an earlier-onset lysosomal storage disorder caused by severe lysosomal dysfunction. Multiple genome-wide association studies have shown that risk of FTD in GRN mutation carriers is modified by polymorphisms in TMEM106B, which encodes a lysosomal membrane protein. Risk alleles of TMEM106B may increase TMEM106B levels through a variety of mechanisms. Brains from FTD patients with GRN mutations exhibit increased TMEM106B expression, and protective TMEM106B polymorphisms are associated with decreased TMEM106B expression. Together, these data raise the possibility that reduction of TMEM106B levels may protect against the pathogenic effects of progranulin haploinsufficiency.MethodsWe crossed Tmem106b+/− mice with Grn+/− mice, which model the progranulin haploinsufficiency of GRN mutation carriers and develop age-dependent social deficits and lysosomal abnormalities in the brain. We tested whether partial Tmem106b reduction could normalize the social deficits and lysosomal abnormalities of Grn+/− mice.ResultsPartial reduction of Tmem106b levels did not correct the social deficits of Grn+/− mice. Tmem106b reduction also failed to normalize most lysosomal abnormalities of Grn+/− mice, except for β-glucuronidase activity, which was suppressed by Tmem106b reduction and increased by progranulin insufficiency.ConclusionsThese data do not support the hypothesis that Tmem106b reduction protects against the pathogenic effects of progranulin haploinsufficiency, but do show that Tmem106b reduction normalizes some lysosomal phenotypes in Grn+/− mice.


Alzheimers & Dementia | 2018

PROGRANULIN GENE THERAPY IMPROVES PATHOLOGY AND REVERSES SOCIAL DEFICITS IN MOUSE MODELS OF FRONTOTEMPORAL DEMENTIA AND NEURONAL CEROID LIPOFUSCINOSIS DUE TO PROGRANULIN MUTATIONS

Andrew E. Arrant; Vincent C. Onyilo; Daniel E. Unger; Erik D. Roberson


Journal of Neuroscience Nursing | 2016

Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration

Erik G. Gentry; Benjamin W. Henderson; Andrew E. Arrant; Marla Gearing; Yangbo Feng; Nicole C. Riddle; Jeremy H. Herskowitz

Collaboration


Dive into the Andrew E. Arrant's collaboration.

Top Co-Authors

Avatar

Erik D. Roberson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Filiano

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Unger

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Vincent C. Onyilo

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

A. M. Hall

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Aashka R. Patel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Allen H. Young

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ari J. Green

University of California

View shared research outputs
Top Co-Authors

Avatar

Benjamin W. Henderson

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge