Andrew E. Newhouse
State University of New York College of Environmental Science and Forestry
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew E. Newhouse.
Plant Cell Reports | 2007
Andrew E. Newhouse; Franziska Schrodt; Haiying Liang; Charles A. Maynard; William A. Powell
The American elm (Ulmus americana L.) was once one of the most common urban trees in eastern North America until Dutch-elm disease (DED), caused by the fungus Ophiostoma novo-ulmi, eliminated most of the mature trees. To enhance DED resistance, Agrobacterium was used to transform American elm with a transgene encoding the synthetic antimicrobial peptide ESF39A, driven by a vascular promoter from American chestnut. Four unique, single-copy transgenic lines were produced and regenerated into whole plants. These lines showed less wilting and significantly less sapwood staining than non-transformed controls after O. novo-ulmi inoculation. Preliminary observations indicated that mycorrhizal colonization was not significantly different between transgenic and wild-type trees. Although the trees tested were too young to ensure stable resistance was achieved, these results indicate that transgenes encoding antimicrobial peptides reduce DED symptoms and therefore hold promise for enhancing pathogen resistance in American elm.
Plant Cell Tissue and Organ Culture | 2006
Linda D. Polin; Haiying Liang; Ronald E. Rothrock; Mutsumi Nishii; Deborah L. Diehl; Andrew E. Newhouse; C. Joseph Nairn; William A. Powell; Charles A. Maynard
These studies were designed to test if a binary vector containing the gfp, bar and oxalate oxidase genes could transform American chestnut somatic embryos; to see if a desiccation treatment during co-cultivation would affect the transformation frequency of different American chestnut somatic embryo clones; to explore the effects of more rapid desiccation; and to see if the antibiotics used to kill the Agrobacterium were interfering with the regeneration of the somatic embryos. Two days of gradual desiccation was found to significantly enhance transient GFP expression frequency. When this treatment was tested on six American chestnut clones, five were transformed and four of these remained embryogenic. Transformation was confirmed by Southern hybridization. Phenotypically normal transgenic shoots were regenerated and rooted. Vascular tissue specific expression of the oxalate oxidase gene was detected in one transgenic line. Carbenicillin, cefotaxime, and tricarcillin were found to not interfere with the regeneration of transformed embryos.
Transgenic Research | 2013
Bo Zhang; Allison D. Oakes; Andrew E. Newhouse; Kathleen M. Baier; Charles A. Maynard; William A. Powell
American chestnut (Castanea dentata) was transformed with a wheat oxalate oxidase (oxo) gene in an effort to degrade the oxalic acid (OA) secreted by the fungus Cryphonectria parasitica, thus decreasing its virulence. Expression of OxO was examined under two promoters: a strong constitutive promoter, CaMV 35S, and a predominantly vascular promoter, VspB. Oxo gene transcription was quantified by RT-qPCR. Relative expression of OxO varied approximately 200 fold among events produced with the 35S-OxO. The lowest 35S-OxO event expressed approximately 3,000 fold higher than the highest VspB-OxO event. This was potentially due to the tissue-specific nature of the VspB-controlled expression, the strength of the CaMV 35S constitutive promoter, or position effects. Leaf assays measuring necrotic lesion length were conducted to better understand the relationship between OxO expression level and the blight fungus in planta. A threshold response was observed between the OxO expression level and the C. parasitica lesion length. Five events of the 35S-OxO line showed significantly reduced lesion length compared to the blight-susceptible American chestnut. More importantly, the lesion length in these five events was reduced to the same level as the blight-resistant Chinese chestnut, C. mollissima. This is the first report on enhanced pathogen resistance in transgenic American chestnut.
Plant Cell Tissue and Organ Culture | 2007
Ronald E. Rothrock; Linda D. Polin-McGuigan; Andrew E. Newhouse; William A. Powell; Charles A. Maynard
In an attempt to improve Agrobacterium-mediated transformation frequency of American chestnut somatic embryos, a novel method of inoculation/co-cultivation was developed. Plate flooding is a simple method where the Agrobacterium inoculum is poured onto the embryos while they remain on multiplication medium. This method tested the hypothesis that wounding tissues prior to co-cultivation was unnecessary or counterproductive. Two clones, WB296 and P1-1, were tested for differences in transformation efficiency as measured by the number of transformed embryogenic cell lines per Petri dish, the total number of transformed cell lines (embryos plus callus) and percentage of transformants that remained embryogenic. Plate flooding using clone WB296 produced significantly more transformed embryo cell lines and had a higher percentage of transformants remain embryogenic. The number of total transformed cell lines (embryos plus callus) was the same as obtained by other methods (desiccation, blot dry, sand abrasion, sonication and vacuum infiltration). With clone P1-1 there were no significant differences among the inoculation/co-cultivation treatments tested. Polymerase chain reaction and Southern hybridizations confirmed that the transgene of interest had been stably integrated into both American chestnut clones. Whole plants were regenerated from clone P1-1.
Plant Disease | 2014
Andrew E. Newhouse; Jesse E. Spitzer; Charles A. Maynard; William A. Powell
American chestnuts (Castanea dentata), effectively eliminated from eastern North America by chestnut blight in the twentieth century, are the subject of multiple restoration efforts. Screening individual trees (or tree types) for blight resistance is a critical step in all of these programs. Traditional screening involves inoculating stems of >3-year-old trees with the blight fungus (Cryphonectria parasitica), then measuring resulting cankers a few months later. A quicker, nondestructive, quantitative assay, usable on younger plants, would enhance restoration efforts by speeding the screening process. The assay presented here meets these requirements by inoculating excised leaves with the blight fungus and measuring resulting necrotic lesions. Leaves can be collected from few-month-old seedlings or fully mature trees, and results are measured after less than a week. Leaves from several lines of both American and Chinese chestnuts were inoculated, as well as the congener Allegheny chinquapin, and experimental leaf assay results correlate well with stem assay results from these species. Inoculations with virulent and hypovirulent blight fungi strains also showed relative patterns similar to traditional inoculations. Given the correlations to established stem assay results, this procedure could be a valuable tool to quickly evaluate blight resistance in American chestnut trees used for restoration.
Methods of Molecular Biology | 2006
Andrew E. Newhouse; Franziska Schrodt; Charles A. Maynard; William A. Powell
American elm (Ulmus americana) is a valuable and sentimental tree species that was decimated by Dutch elm disease in the mid-20th century. Therefore, any methods for modifying American elm or enhancing disease resistance are significant. This protocol describes transformation and tissue culture techniques used on American elm. Leaf pieces containing the midvein and petiole are used for explants. Agrobacterium tumefaciens strain EHA105 is used for transformation, with the binary vector pSE39, containing CaMV35S/nptII as a selectable marker, ACS2/ESF39A as a putative resistance enhancing gene, and CaMV35S/GUS as a reporter.
Methods of Molecular Biology | 2015
Charles A. Maynard; Linda D. McGuigan; Allison D. Oakes; Bo Zhang; Andrew E. Newhouse; Lilibeth C. Northern; Allison M. Chartrand; Logan R. Will; Kathleen M. Baier; William A. Powell
The key to successful transformation of American chestnut is having the correct combination of explant tissue, selectable markers, a very robust DNA delivery system, and a reliable regeneration system. The most important components of this transformation protocol for American chestnut are the following: starting out with rapidly dividing somatic embryos, treating the embryos gently throughout the Agrobacterium inoculation and cocultivation steps, doing the cocultivation step in desiccation plates, and finally transferring the embryos into temporary-immersion bioreactors for selection. None of these departures from standard Agrobacterium transformation protocols is sufficient by itself to achieve transgenic American chestnut, but each component makes a difference, resulting in a highly robust protocol. The average transformation efficiency that can be expected using the described protocol is approximately 170 stable embryogenic transformation events per gram of somatic embryo tissue, a considerable improvement over the 20 transformation events per gram we reported in 2006 (Maynard et al. American chestnut (Castanea dentata (Marsh.) Borkh.) Agrobacterium protocols, 2nd ed., 2006). We have regenerated nearly 100 of these events, containing 23 different gene constructs, into whole plants. As of the fall of 2013, we had a total of 1,275 transgenic chestnut trees planted at eight locations in New York State and one in Virginia. Based on a combination of field-trial inoculations, greenhouse small-stem inoculations, and detached-leaf assays, we have identified three transgenes that produce stronger resistance to chestnut blight than non-transgenic American chestnut. Depending on the transgene and the event, this resistance can be either intermediate between American chestnut and Chinese chestnut, approximately equal to or even higher than the resistance naturally found in Chinese chestnut.
BMC Proceedings | 2011
Bo Zhang; Andrew E. Newhouse; Linda D. McGuigan; Charles A. Maynard; William A. Powell
Background American chestnut is a tree of great historical, ecological, and economical importance. It once dominated forests in eastern United States until the introduction of chestnut blight fungus (Cryphonectria parasitica) in the late 19th century. Within 50 years, C. parasitica killed almost all of the 4 billion American chestnut trees in the eastern United States. The fungus first infects wounded stem, secretes oxalic acid to decrease the pH of the infected tissue to toxic levels for the tree, but optimum for fungal enzymes, and then mycelia fans spread forming a canker which when it girdles a branch prevents water and nutrient transport, eventually killing the tree above the canker. The fungus does not infect the roots, thus allowing the growth of adventitious shoots to keep the tree alive. However, this survival is only temporary because these spouts will again get infected by the fungus and die back to the ground. It is this continuing circle that made American chestnut, once a great canopy tree, to no more than an early-succession-stage shrub today. Efforts to restore American chestnut back to its native range are currently being made. In our labs, we use an Agrobacterium-mediated co-transformation system to deliver potential resistant genes into somatic embryos of American chestnut together with a selectable marker gene. The gene of interest we used is an oxalate oxidase gene from wheat (Triticum aestivum). Oxalate oxidase (OxO) can degrade the fungus secreted oxalic acid to carbon dioxide and hydrogen peroxide. This action has a duel-effect: bringing up the pH of the infected sites thus neutralizing the virulent effect of oxalic acid, and increasing the expression of defense related genes induced by hydrogen peroxide byproduct. The selectable marker we used is Green Florescent Protein (GFP) from Aequorea victoria, which allows us to have a direct visual selection of successful transformants.
Frontiers in Plant Science | 2018
Andrew E. Newhouse; Allison D. Oakes; Hannah C. Pilkey; Hannah E. Roden; Thomas R. Horton; William A. Powell
The American chestnut (Castanea dentata) was once an integral part of eastern United States deciduous forests, with many environmental, economic, and social values. This ended with the introduction of an invasive fungal pathogen that wiped out over three billion trees. Transgenic American chestnuts expressing a gene for oxalate oxidase successfully tolerate infections by this blight fungus, but potential non-target environmental effects should be evaluated before new restoration material is released. Two greenhouse bioassays evaluated belowground interactions between transgenic American chestnuts and neighboring organisms found in their native ecosystems. Potential allelopathy was tested by germinating several types of seeds, all native to American chestnut habitats, in the presence of chestnut leaf litter. Germination was not significantly different in terms of number of seeds germinated or total biomass of germinated seedlings in transgenic and non-transgenic leaf litter. Separately, ectomycorrhizal associations were observed on transgenic and non-transgenic American chestnut roots using field soil inoculum. Root tip colonization was consistently high (>90% colonization) on all plants and not significantly different between any tree types. These observations on mycorrhizal fungi complement previous studies performed on older transgenic lines which expressed oxalate oxidase at lower levels. Along with other environmental impact comparisons, these conclusions provide further evidence that transgenic American chestnuts are not functionally different with regard to ecosystem interactions than non-transgenic American chestnuts.
Plant Science | 2014
Andrew E. Newhouse; Linda D. Polin-McGuigan; Kathleen Baier; Kristia E.R. Valletta; William H. Rottmann; Timothy J. Tschaplinski; Charles A. Maynard; William A. Powell
Collaboration
Dive into the Andrew E. Newhouse's collaboration.
State University of New York College of Environmental Science and Forestry
View shared research outputsState University of New York College of Environmental Science and Forestry
View shared research outputsState University of New York College of Environmental Science and Forestry
View shared research outputsState University of New York College of Environmental Science and Forestry
View shared research outputsState University of New York College of Environmental Science and Forestry
View shared research outputsState University of New York College of Environmental Science and Forestry
View shared research outputsState University of New York College of Environmental Science and Forestry
View shared research outputs