Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Fosberry is active.

Publication


Featured researches published by Andrew Fosberry.


Nature | 2010

Type IIA topoisomerase inhibition by a new class of antibacterial agents

Benjamin D. Bax; Pan F. Chan; Drake S. Eggleston; Andrew Fosberry; Daniel Robert Gentry; Fabrice Gorrec; Ilaria Giordano; Michael M. Hann; Alan Joseph Hennessy; Martin Hibbs; Jianzhong Huang; Emma Jones; Jo Jones; Kristin K. Brown; Ceri Lewis; Earl W. May; Martin R. Saunders; Onkar M. P. Singh; Claus Spitzfaden; Carol Shen; Anthony Shillings; Andrew J. Theobald; Alexandre Wohlkonig; Neil David Pearson; Michael N. Gwynn

Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 Å crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor ‘bridges’ the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.


Nature Structural & Molecular Biology | 2010

Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance.

Alexandre Wohlkonig; Pan F. Chan; Andrew Fosberry; Paul Homes; Jianzhong Huang; Michael Kranz; Vaughan R. Leydon; Timothy James Miles; Neil David Pearson; Rajika L. Perera; Anthony Shillings; Michael N. Gwynn; Benjamin D. Bax

Quinolone antibacterials have been used to treat bacterial infections for over 40 years. A crystal structure of moxifloxacin in complex with Acinetobacter baumannii topoisomerase IV now shows the wedge-shaped quinolone stacking between base pairs at the DNA cleavage site and binding conserved residues in the DNA cleavage domain through chelation of a noncatalytic magnesium ion. This provides a molecular basis for the quinolone inhibition mechanism, resistance mutations and invariant quinolone antibacterial structural features.


Antimicrobial Agents and Chemotherapy | 2002

Discovery of a Novel and Potent Class of FabI-Directed Antibacterial Agents

David J. Payne; William H. Miller; Valerie Berry; John Brosky; Walter J. Burgess; Emile Chen; Walter E. DeWolf; Andrew Fosberry; Rebecca Greenwood; Martha S. Head; Dirk A. Heerding; Cheryl A. Janson; Deborah Dee Jaworski; Paul M. Keller; Peter J. Manley; Terrance D. Moore; Kenneth A. Newlander; Stewart Pearson; Brian J. Polizzi; Xiayang Qiu; Stephen Rittenhouse; Courtney Slater-Radosti; Kevin L. Salyers; Mark A. Seefeld; Martin G. Smyth; Dennis T. Takata; Irene Nijole Uzinskas; Kalindi Vaidya; Nicola G. Wallis; Scott B. Winram

ABSTRACT Bacterial enoyl-acyl carrier protein (ACP) reductase (FabI) catalyzes the final step in each elongation cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. High-throughput screening of the Staphylococcus aureus FabI enzyme identified a novel, weak inhibitor with no detectable antibacterial activity against S. aureus. Iterative medicinal chemistry and X-ray crystal structure-based design led to the identification of compound 4 [(E)-N-methyl-N-(2-methyl-1H-indol-3-ylmethyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylamide], which is 350-fold more potent than the original lead compound obtained by high-throughput screening in the FabI inhibition assay. Compound 4 has exquisite antistaphylococci activity, achieving MICs at which 90% of isolates are inhibited more than 500 times lower than those of nine currently available antibiotics against a panel of multidrug-resistant strains of S. aureus and Staphylococcus epidermidis. Furthermore, compound 4 exhibits excellent in vivo efficacy in an S. aureus infection model in rats. Biochemical and genetic approaches have confirmed that the mode of antibacterial action of compound 4 and related compounds is via inhibition of FabI. Compound 4 also exhibits weak FabK inhibitory activity, which may explain its antibacterial activity against Streptococcus pneumoniae and Enterococcus faecalis, which depend on FabK and both FabK and FabI, respectively, for their enoyl-ACP reductase function. These results show that compound 4 is representative of a new, totally synthetic series of antibacterial agents that has the potential to provide novel alternatives for the treatment of S. aureus infections that are resistant to our present armory of antibiotics.


Bioorganic & Medicinal Chemistry Letters | 2001

1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI)

Dirk A. Heerding; George M. Chan; Walter E. DeWolf; Andrew Fosberry; Cheryl A. Janson; Deborah D. Jaworski; Edward McManus; William Henry Miller; Terrance D. Moore; David J. Payne; Xiayang Qiu; Stephen Rittenhouse; Courtney Slater-Radosti; Ward W. Smith; Dennis T. Takata; Kalindi Vaidya; Catherine C.K. Yuan; William F. Huffman

1,4-Disubstituted imidazole inhibitors of Staphylococcus aureus and Escherichia coli enoyl acyl carrier protein reductase (FabI) have been identified. Crystal structure data shows the inhibitor 1 bound in the enzyme active site of E. coli FabI.


Bioorganic & Medicinal Chemistry Letters | 2002

The antimicrobial natural product chuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase.

Murray J.B. Brown; Paul S. Carter; Ashley E. Fenwick; Andrew Fosberry; Dieter Hamprecht; Martin Hibbs; Richard L. Jarvest; Lucy Mensah; Peter Henry Milner; Peter J. O'Hanlon; Andrew J. Pope; Christine M. Richardson; Andrew West; David R. Witty

The antimicrobial natural product chuangxinmycin has been found to be a potent and selective inhibitor of bacterial tryptophanyl tRNA synthetase (WRS). A number of analogues have been synthesised. The interaction with WRS appears to be highly constrained, as only sterically smaller analogues afforded significant inhibition. The only analogue to show inhibition comparable to chuangxinmycin also had antibacterial activity. WRS inhibition may contribute to the antibacterial action of chuangxinmycin.


Protein Science | 2001

Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors

Xiayang Qiu; Cheryl A. Janson; Ward W. Smith; Susan M. Green; Patrick McDevitt; Kyung Johanson; Paul S. Carter; Martin Hibbs; Ceri Lewis; Alison F Chalker; Andrew Fosberry; Judith Lalonde; John M. Berge; Pamela Brown; Catherine S. V. Houge-Frydrych; Richard L. Jarvest

SB‐219383 and its analogues are a class of potent and specific inhibitors of bacterial tyrosyl‐tRNA synthetases. Crystal structures of these inhibitors have been solved in complex with the tyrosyl‐tRNA synthetase from Staphylococcus aureus, the bacterium that is largely responsible for hospital‐acquired infections. The full‐length enzyme yielded crystals that diffracted to 2.8 Å resolution, but a truncated version of the enzyme allowed the resolution to be extended to 2.2 Å. These inhibitors not only occupy the known substrate binding sites in unique ways, but also reveal a butyl binding pocket. It was reported that the Bacillus stearothermophilus TyrRS T51P mutant has much increased catalytic activity. The S. aureus enzyme happens to have a proline at position 51. Therefore, our structures may contribute to the understanding of the catalytic mechanism and provide the structural basis for designing novel antimicrobial agents.


Bioorganic & Medicinal Chemistry Letters | 2001

Inhibitors of bacterial enoyl acyl carrier protein reductase (FabI): 2,9-disubstituted 1,2,3,4-tetrahydropyrido[3,4-b]indoles as potential antibacterial agents

Mark A. Seefeld; William Henry Miller; Kenneth A. Newlander; Walter J. Burgess; David J. Payne; Stephen Rittenhouse; Terrance D. Moore; Walter E. DeWolf; Paul M. Keller; Xiayang Qiu; Cheryl A. Janson; Kalindi Vaidya; Andrew Fosberry; Martin G. Smyth; Deborah D. Jaworski; Courtney Slater-Radosti; William F. Huffman

An SAR study of a screening lead has led to the identification of 2,9-disubstituted 1,2,3,4-tetrahydropyrido[3,4-b]indoles as inhibitors of Staphylococcus aureus enoyl acyl carrier protein reductase (FabI).


Molecular Microbiology | 2003

Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli

Julia A. Hubbard; Lesley K. MacLachlan; Gavin W. King; Joanna J. Jones; Andrew Fosberry

Two‐component signal transduction (TCST) pathways are regulatory systems that are highly homologous throughout the bacterial kingdom. Their established role in virulence and absence in vertebrates has made TCST an attractive target for therapeutic intervention. However, such systems have yet to yield success in the development of novel antibiotics. CheY serves as a prototype for the analysis of response regulator function. The protein structure exhibits several conformations by both X‐ray and nuclear magnetic resonance (NMR) analyses. Knowledge of which structures are relevant in vivo would be valuable in a rational drug design project. Our aim was to probe the in vivo conformation and ligand binding of CheY in Escherichia coli under resting conditions by in‐cell NMR methods. CheY was selectively labelled with 15N by the control of growth and expression conditions. NMR spectra obtained in vivo demonstrated that the Mg2+ complex was the predominant form even though cells were resuspended in metal‐free buffers and the intracellular free Mg2+ was low. In‐cell NMR also confirmed the uptake and in vivo binding mode to CheY of small‐molecular‐weight compounds identified in vitro. This paper reports the first observation of the structure and interactions with a potential drug of a regulator protein in its native host in vivo using NMR spectroscopy.


Antimicrobial Agents and Chemotherapy | 1994

Cloning and sequence analysis of blaBIL-1, a plasmid-mediated class C beta-lactamase gene in Escherichia coli BS.

Andrew Fosberry; David J. Payne; E J Lawlor; J E Hodgson

The extended-spectrum, plasmid-borne beta-lactamase gene blaBIL-1, which was discovered in Escherichia coli, has been cloned. Unusually for a plasmid-borne beta-lactamase, blaBIL-1 encodes a novel class C enzyme and appears to have originated from the chromosomal ampC gene of Citrobacter freundii.


Protein Science | 2003

Structural Variation and inhibitor binding in polypeptide deformylase from four different bacterial species.

Kathrine J. Smith; Chantal M. Petit; Kelly Aubart; Martin G. Smyth; Edward McManus; Jo Jones; Andrew Fosberry; Ceri Lewis; Michael Lonetto; Siegfried B. Christensen

Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram‐negative species (E. coli and H. influenzae) and the two Gram‐positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1′ pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB‐485345, SB‐543668, and SB‐505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram‐negative and Gram‐positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad‐spectrum polypeptide deformylase inhibitor molecules.

Collaboration


Dive into the Andrew Fosberry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Edward Hodgson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge