Michael N. Gwynn
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael N. Gwynn.
Nature Reviews Drug Discovery | 2007
David J. Payne; Michael N. Gwynn; David J. Holmes; David L. Pompliano
The sequencing of the first complete bacterial genome in 1995 heralded a new era of hope for antibacterial drug discoverers, who now had the tools to search entire genomes for new antibacterial targets. Several companies, including GlaxoSmithKline, moved back into the antibacterials area and embraced a genomics-derived, target-based approach to screen for new classes of drugs with novel modes of action. Here, we share our experience of evaluating more than 300 genes and 70 high-throughput screening campaigns over a period of 7 years, and look at what we learned and how that has influenced GlaxoSmithKlines antibacterials strategy going forward.
Nature | 2010
Benjamin D. Bax; Pan F. Chan; Drake S. Eggleston; Andrew Fosberry; Daniel Robert Gentry; Fabrice Gorrec; Ilaria Giordano; Michael M. Hann; Alan Joseph Hennessy; Martin Hibbs; Jianzhong Huang; Emma Jones; Jo Jones; Kristin K. Brown; Ceri Lewis; Earl W. May; Martin R. Saunders; Onkar M. P. Singh; Claus Spitzfaden; Carol Shen; Anthony Shillings; Andrew J. Theobald; Alexandre Wohlkonig; Neil David Pearson; Michael N. Gwynn
Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 Å crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor ‘bridges’ the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.
Journal of Bacteriology | 2000
E. Imogen Wilding; James R. Brown; Alexander P. Bryant; Alison F. Chalker; David J. Holmes; Karen A. Ingraham; Serban Iordanescu; Chi Y. So; Martin Rosenberg; Michael N. Gwynn
The mevalonate pathway and the glyceraldehyde 3-phosphate (GAP)-pyruvate pathway are alternative routes for the biosynthesis of the central isoprenoid precursor, isopentenyl diphosphate. Genomic analysis revealed that the staphylococci, streptococci, and enterococci possess genes predicted to encode all of the enzymes of the mevalonate pathway and not the GAP-pyruvate pathway, unlike Bacillus subtilis and most gram-negative bacteria studied, which possess only components of the latter pathway. Phylogenetic and comparative genome analyses suggest that the genes for mevalonate biosynthesis in gram-positive cocci, which are highly divergent from those of mammals, were horizontally transferred from a primitive eukaryotic cell. Enterococci uniquely encode a bifunctional protein predicted to possess both 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and acetyl-CoA acetyltransferase activities. Genetic disruption experiments have shown that five genes encoding proteins involved in this pathway (HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase) are essential for the in vitro growth of Streptococcus pneumoniae under standard conditions. Allelic replacement of the HMG-CoA synthase gene rendered the organism auxotrophic for mevalonate and severely attenuated in a murine respiratory tract infection model. The mevalonate pathway thus represents a potential antibacterial target in the low-G+C gram-positive cocci.
Nature Structural & Molecular Biology | 2010
Alexandre Wohlkonig; Pan F. Chan; Andrew Fosberry; Paul Homes; Jianzhong Huang; Michael Kranz; Vaughan R. Leydon; Timothy James Miles; Neil David Pearson; Rajika L. Perera; Anthony Shillings; Michael N. Gwynn; Benjamin D. Bax
Quinolone antibacterials have been used to treat bacterial infections for over 40 years. A crystal structure of moxifloxacin in complex with Acinetobacter baumannii topoisomerase IV now shows the wedge-shaped quinolone stacking between base pairs at the DNA cleavage site and binding conserved residues in the DNA cleavage domain through chelation of a noncatalytic magnesium ion. This provides a molecular basis for the quinolone inhibition mechanism, resistance mutations and invariant quinolone antibacterial structural features.
Annals of the New York Academy of Sciences | 2010
Michael N. Gwynn; Alison Portnoy; Stephen Rittenhouse; David J. Payne
The discovery of novel antibiotic classes has not kept pace with the growing threat of bacterial resistance. Antibiotic candidates that act at new targets or via distinct mechanisms have the greatest potential to overcome resistance; however, novel approaches are also associated with higher attrition and longer timelines. This uncertainty has contributed to the withdrawal from antibiotic programs by many pharmaceutical companies. Genomic approaches have not yielded satisfactory results, in part due to nascent knowledge about unprecedented molecular targets, the challenge of achieving antibacterial activity by lead optimization of enzyme inhibitors, and the limitations of compound screening libraries for antibacterial discovery. Enhanced diversity of compound screening banks, entry into new chemical space, and new screening technologies are currently being exploited to improve hit rates for antibacterial discovery. Antibacterial compound lead optimization faces hurdles associated with the high plasma exposures required for efficacy. Lead optimization would be enhanced by the identification of new antibiotic classes with improved tractability and by expanding the predictability of in vitro safety assays. Implementing multiple screening and target identification strategies is recommended for improving the likelihood of discovering new antibacterial compounds that address unmet needs.
Antimicrobial Agents and Chemotherapy | 2008
Daniel R. Gentry; Lynn McCloskey; Michael N. Gwynn; Stephen Rittenhouse; Nicole Scangarella; Ribhi M. Shawar; David J. Holmes
ABSTRACT Retapamulin MICs of ≥2 μg/ml were noted for 6 of 5,676 S. aureus recent clinical isolates evaluated. The ABC proteins VgaAv and VgaA were found to be responsible for the reduced susceptibility to pleuromutilins exhibited by these six isolates.
Bioorganic & Medicinal Chemistry Letters | 2013
Timothy James Miles; Alan Joseph Hennessy; Ben Bax; Gerald Brooks; Barry S. Brown; Pamela Brown; Nathalie Cailleau; Dongzhao Chen; Steven Dabbs; David Thomas Davies; Joel M. Esken; Ilaria Giordano; Jennifer Hoover; Jianzhong Huang; Graham Elgin Jones; Senthill K. Kusalakumari Sukmar; Claus Spitzfaden; Roger Edward Markwell; Elisabeth A. Minthorn; Steve Rittenhouse; Michael N. Gwynn; Neil David Pearson
During the course of our research to find novel mode of action antibacterials, we discovered a series of hydroxyl tricyclic compounds that showed good potency against Gram-positive and Gram-negative pathogens. These compounds inhibit bacterial type IIA topoisomerases. Herein we will discuss structure-activity relationships in this series and report advanced studies on compound 1 (GSK966587) which demonstrates good PK and in vivo efficacy properties. X-ray crystallographic studies were used to provide insight into the structural basis for the difference in antibacterial potency between enantiomers.
Bioorganic & Medicinal Chemistry Letters | 2011
Timothy James Miles; Jeffrey M. Axten; Christopher Barfoot; Gerald Brooks; Pamela Brown; Dongzhao Chen; Steven Dabbs; David Thomas Davies; David L. Downie; Susanne Eyrisch; Timothy F. Gallagher; Ilaria Giordano; Michael N. Gwynn; Alan Joseph Hennessy; Jennifer Hoover; Jianzhong Huang; Graham Elgin Jones; Roger Edward Markwell; William Henry Miller; Elizabeth A. Minthorn; Stephen Rittenhouse; Mark A. Seefeld; Neil David Pearson
We have identified a series of amino-piperidine antibacterials with a good broad spectrum potency. We report the investigation of various subunits in this series and advanced studies on compound 8. Compound 8 possesses good pharmacokinetics, broad spectrum antibacterial activity and demonstrates oral efficacy in a rat lung infection model.
Bioorganic & Medicinal Chemistry Letters | 2011
Timothy James Miles; Christopher Barfoot; Gerald Brooks; Pamela Brown; Dongzhao Chen; Steven Dabbs; David Thomas Davies; David L. Downie; Susanne Eyrisch; Ilaria Giordano; Michael N. Gwynn; Alan Joseph Hennessy; Jennifer Hoover; Jianzhong Huang; Graham Elgin Jones; Roger Edward Markwell; Stephen Rittenhouse; Hong Xiang; Neil David Pearson
As part of our wider efforts to exploit novel mode of action antibacterials, we have discovered a series of cyclohexyl-amide compounds that has good Gram positive and Gram negative potency. The mechanism of action is via inhibition of bacterial topoisomerases II and IV. We have investigated various subunits in this series and report advanced studies on compound 7 which demonstrates good PK and in vivo efficacy properties.
Bioorganic & Medicinal Chemistry Letters | 2016
Timothy James Miles; Alan Joseph Hennessy; Ben Bax; Gerald Brooks; Barry S. Brown; Pamela Brown; Nathalie Cailleau; Dongzhao Chen; Steven Dabbs; David Thomas Davies; Joel M. Esken; Ilaria Giordano; Jennifer Hoover; Graham Elgin Jones; Senthill K. Kusalakumari Sukmar; Roger Edward Markwell; Elisabeth A. Minthorn; Steve Rittenhouse; Michael N. Gwynn; Neil David Pearson
During the course of our research on the lead optimisation of the NBTI (Novel Bacterial Type II Topoisomerase Inhibitors) class of antibacterials, we discovered a series of tricyclic compounds that showed good Gram-positive and Gram-negative potency. Herein we will discuss the various subunits that were investigated in this series and report advanced studies on compound 1 (GSK945237) which demonstrates good PK and in vivo efficacy properties.