Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew G. Bert is active.

Publication


Featured researches published by Andrew G. Bert.


Nature Cell Biology | 2008

The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1

Philip A. Gregory; Andrew G. Bert; Emily L. Paterson; Simon C. Barry; Anna Tsykin; Gelareh Farshid; Mathew A. Vadas; Yeesim Khew-Goodall; Gregory J. Goodall

Epithelial to mesenchymal transition (EMT) facilitates tissue remodelling during embryonic development and is viewed as an essential early step in tumour metastasis. We found that all five members of the microRNA-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) and miR-205 were markedly downregulated in cells that had undergone EMT in response to transforming growth factor (TGF)-β or to ectopic expression of the protein tyrosine phosphatase Pez. Enforced expression of the miR-200 family alone was sufficient to prevent TGF-β-induced EMT. Together, these microRNAs cooperatively regulate expression of the E-cadherin transcriptional repressors ZEB1 (also known as δEF1) and SIP1 (also known as ZEB2), factors previously implicated in EMT and tumour metastasis. Inhibition of the microRNAs was sufficient to induce EMT in a process requiring upregulation of ZEB1 and/or SIP1. Conversely, ectopic expression of these microRNAs in mesenchymal cells initiated mesenchymal to epithelial transition (MET). Consistent with their role in regulating EMT, expression of these microRNAs was found to be lost in invasive breast cancer cell lines with mesenchymal phenotype. Expression of the miR-200 family was also lost in regions of metaplastic breast cancer specimens lacking E-cadherin. These data suggest that downregulation of the microRNAs may be an important step in tumour progression.


Cancer Research | 2008

A Double-Negative Feedback Loop between ZEB1-SIP1 and the microRNA-200 Family Regulates Epithelial-Mesenchymal Transition

Cameron P. Bracken; Philip A. Gregory; Natasha Kolesnikoff; Andrew G. Bert; Wang J; Shannon Mf; Gregory J. Goodall

Epithelial to mesenchymal transition occurs during embryologic development to allow tissue remodeling and is proposed to be a key step in the metastasis of epithelial-derived tumors. The miR-200 family of microRNAs plays a major role in specifying the epithelial phenotype by preventing expression of the transcription repressors, ZEB1/deltaEF1 and SIP1/ZEB2. We show here that miR-200a, miR-200b, and the related miR-429 are all encoded on a 7.5-kb polycistronic primary miRNA (pri-miR) transcript. We show that the promoter for the pri-miR is located within a 300-bp segment located 4 kb upstream of miR-200b. This promoter region is sufficient to confer expression in epithelial cells and is repressed in mesenchymal cells by ZEB1 and SIP1 through their binding to a conserved pair of ZEB-type E-box elements located proximal to the transcription start site. These findings establish a double-negative feedback loop controlling ZEB1-SIP1 and miR-200 family expression that regulates cellular phenotype and has direct relevance to the role of these factors in tumor progression.


Cell Cycle | 2008

MicroRNAs as regulators of epithelial-mesenchymal transition

Philip A. Gregory; Cameron P. Bracken; Andrew G. Bert; Gregory J. Goodall

Epithelial-mesenchymal transition (EMT) describes the molecular reprogramming and phenotypic changes involved in the conversion of polarised immotile epithelial cells to motile mesenchymal cells. This process allows the remodelling of tissues during embryonic development and is implicated in the promotion of tumor invasion and metastasis. Several recent studies have identified the miR-200 family and miR-205 as key regulators of EMT and enforcers of the epithelial phenotype. The miR-200 family participates in a signaling network with the E-cadherin transcriptional repressors ZEB1/δEF1 and ZEB2/SIP1, and TGF-β2 that is postulated to facilitate maintenance of stable epithelial or mesenchymal states but also allow reversible switching between these states in response to EMT effectors (such as TGF-β). This review summarizes these recent findings and their implications in both developmental EMT and tumor progression.


Molecular Biology of the Cell | 2011

An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition

Philip A. Gregory; Cameron P. Bracken; Eric Smith; Andrew G. Bert; Josephine A. Wright; S. Roslan; M. Morris; Leila Wyatt; Gelareh Farshid; Yat-Yuen Lim; Geoffrey J. Lindeman; Shannon Mf; Paul A. Drew; Yeesim Khew-Goodall; Gregory J. Goodall

Epithelial-mesenchymal transition is a form of cellular plasticity that is critical for embryonic development and tumor metastasis. This study shows that a signaling network involving autocrine TGF-β signaling, ZEB transcription factors, and the miR-200 family regulates interconversion between epithelial and mesenchymal states.


Molecular and Cellular Biology | 1995

Human granulocyte-macrophage colony-stimulating factor enhancer function is associated with cooperative interactions between AP-1 and NFATp/c.

Peter N. Cockerill; Andrew G. Bert; F Jenkins; G R Ryan; M F Shannon; M A Vadas

The promoter of the human granulocyte-macrophage colony-stimulating factor gene is regulated by an inducible upstream enhancer. The enhancer encompasses three previously defined binding sites for the transcription factor NFAT (GM170, GM330, and GM550) and a novel NFAT site defined here as the GM420 element. While there was considerable redundancy within the enhancer, the GM330, GM420, and GM550 motifs each functioned efficiently in isolation as enhancer elements and bound NFATp and AP-1 in a highly cooperative fashion. These three NFAT sites closely resembled the distal interleukin-2 NFAT site, and methylation interference assays further defined GGA(N)9TCA as a minimum consensus sequence for this family of NFAT sites. By contrast, the GM170 site, which also had conserved GGA and TCA motifs but in which these motifs were separated by 15 bases, supported strong independent but no cooperative binding of AP-1 and NFATp, and this site functioned poorly as an enhancer element. While both the GM330 and GM420 elements were closely associated with the inducible DNase I-hypersensitive site within the enhancer, the GM420 element was the only NFAT site located within a 160-bp HincII-BalI fragment defined by deletion analysis as the essential core of the enhancer. The GM420 element was unusual, however, in containing a high-affinity NFATp/c-binding sequence (TGGAAAGA) immediately upstream of the sequence TGACATCA which more closely resembled a cyclic AMP response-like element than an AP-1 site. We suggest that the cooperative binding of NFATp/c and AP-1 requires a particular spacing of sites and that their cooperativity and induction via independent pathways ensure very tight regulation of the granulocyte-macrophage colony-stimulating factor enhancer.


Journal of Cell Science | 2013

Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state

Yat-Yuen Lim; Josephine A. Wright; Joanne L. Attema; Philip A. Gregory; Andrew G. Bert; Eric Smith; Daniel Thomas; Angel F. Lopez; Paul A. Drew; Yeesim Khew-Goodall; Gregory J. Goodall

Summary The miR-200 family is a key regulator of the epithelial–mesenchymal transition, however, its role in controlling the transition between cancer stem-cell-like and non-stem-cell-like phenotypes is not well understood. We utilized immortalized human mammary epithelial (HMLE) cells to investigate the regulation of the miR-200 family during their conversion to a stem-like phenotype. HMLE cells were found to be capable of spontaneous conversion from a non-stem to a stem-like phenotype and this conversion was accompanied by the loss of miR-200 expression. Stem-like cell fractions isolated from metastatic breast cancers also displayed loss of miR-200 indicating similar molecular changes may occur during breast cancer progression. The phenotypic change observed in HMLE cells was directly controlled by miR-200 because restoration of its expression decreased stem-like properties while promoting a transition to an epithelial phenotype. Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes. In particular, in the stem-like phenotype, the miR-200b-200a-429 cluster was silenced primarily through polycomb group-mediated histone modifications whereas the miR-200c-141 cluster was repressed by DNA methylation. These results indicate that the miR-200 family plays a crucial role in the transition between stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each miR-200 gene in this process. Therapy targeted against miR-200 family members and epigenetic modifications might therefore be applicable to breast cancer.


Immunity | 1997

A T Cell–Specific Enhancer in the Interleukin-3 Locus Is Activated Cooperatively by Oct and NFAT Elements within a DNase I–Hypersensitive Site

Kym N. Duncliffe; Andrew G. Bert; Mathew A. Vadas; Peter N. Cockerill

Interleukin-3 (IL-3) is a cytokine that is expressed primarily in activated T cells. Here we identified an inducible T cell-specific enhancer 14 kb upstream of the IL-3 gene that responded to activation of T cell receptor signaling pathways. The IL-3 enhancer spanned an inducible cyclosporin A-sensitive DNase I-hypersensitive site found only in T cells. Four NFAT-like elements exist within the enhancer. The two most active NFAT-like elements were located at the center of the DNase I-hypersensitive site. One of these NFAT-like elements encompassed overlapping Oct- and NFATp/c-binding sites, which functioned in a highly synergistic manner. We suggest that the T cell-specific expression of the IL-3 gene is partly controlled through the enhancer by cooperation between Oct and NFAT family proteins.


The EMBO Journal | 2014

Genome‐wide identification of miR‐200 targets reveals a regulatory network controlling cell invasion

Cameron P. Bracken; Xiaochun Li; Josephine A. Wright; David Lawrence; Katherine A. Pillman; Marika Salmanidis; Matthew A Anderson; B. Kate Dredge; Philip A. Gregory; Anna Tsykin; Corine T. Neilsen; Daniel W. Thomson; Andrew G. Bert; Joanne M. Leerberg; Alpha S. Yap; Kirk B. Jensen; Yeesim Khew-Goodall; Gregory J. Goodall

The microRNAs of the miR‐200 family maintain the central characteristics of epithelia and inhibit tumor cell motility and invasiveness. Using the Ago‐HITS‐CLIP technology for transcriptome‐wide identification of direct microRNA targets in living cells, along with extensive validation to verify the reliability of the approach, we have identified hundreds of miR‐200a and miR‐200b targets, providing insights into general features of miRNA target site selection. Gene ontology analysis revealed a predominant effect of miR‐200 targets in widespread coordinate control of actin cytoskeleton dynamics. Functional characterization of the miR‐200 targets indicates that they constitute subnetworks that underlie the ability of cancer cells to migrate and invade, including coordinate effects on Rho‐ROCK signaling, invadopodia formation, MMP activity, and focal adhesions. Thus, the miR‐200 family maintains the central characteristics of the epithelial phenotype by acting on numerous targets at multiple levels, encompassing both cytoskeletal effectors that control actin filament organization and dynamics, and upstream signals that locally regulate the cytoskeleton to maintain cell morphology and prevent cell migration.


British Journal of Cancer | 2013

Circulating microRNAs predict biochemical recurrence in prostate cancer patients

Luke A. Selth; Scott L. Townley; Andrew G. Bert; Peter Sutherland; Lisa G. Horvath; Gregory J. Goodall; Lisa M. Butler; Wayne D. Tilley

Background:Circulating microRNAs (miRNAs) are emerging as promising biomarkers for prostate cancer. Here, we investigated the potential of these molecules to assist in prognosis and treatment decision-making.Methods:MicroRNAs in the serum of patients who had experienced rapid biochemical recurrence (BCR) (n=8) or no recurrence (n=8) following radical prostatectomy (RP) were profiled using high-throughput qRT-PCR. Recurrence-associated miRNAs were subsequently quantitated by qRT-PCR in a validation cohort comprised of 70 patients with Gleason 7 cancers treated by RP, 31 of whom had undergone disease progression following surgery. The expression of recurrence-associated miRNAs was also examined in tumour tissue cohorts.Results:Three miRNAs – miR-141, miR-146b-3p and miR-194 – were elevated in patients who subsequently experienced BCR in the screening study. MiR-146b-3p and miR-194 were also associated with disease progression in the validation cohort, as determined by log-rank tests and Cox proportional hazards regression. Multivariate analysis revealed that miR-146b-3p possessed prognostic information beyond standard clinicopathological parameters. Analysis of tissue cohorts revealed that miR-194 was robustly expressed in the prostate, elevated in metastases, and its expression in primary tumours was associated with a poor prognosis.Conclusion:Our study suggests that circulating miRNAs, measured at the time of RP, could be combined with current prognostic tools to predict future disease progression in men with intermediate risk prostate cancers.


Molecular and Cellular Biology | 2004

Granulocyte-macrophage colony-stimulating factor enhancer activation requires cooperation between NFAT and AP-1 elements and is associated with extensive nucleosome reorganization

Brett V. Johnson; Andrew G. Bert; Gregory R. Ryan; Antony Condina; Peter N. Cockerill

ABSTRACT The human granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is activated by an NFAT-dependent enhancer forming an inducible DNase I hypersensitive (DH) site. The enhancer core comprising the DH site contains the GM330 and GM420 elements that bind NFAT and AP-1 cooperatively. Here we demonstrate that both elements are essential for enhancer activity and that Sp1 and AML1 sites in the enhancer become occupied in vivo only after activation. Chromatin structure analysis revealed that the GM-CSF enhancer core elements are divided between two adjacent nucleosomes that become destabilized and highly accessible after activation. Inducible chromatin reorganization was not restricted to the enhancer core but extended across a 3-kb domain of mobilized nucleosomes, within which the nucleosome repeat length was compressed from approximately 185 to 150 bp. The GM420 element is a high-affinity site that binds NFAT independently of AP-1 but depends on the linked AP-1 site for enhancer function. Nevertheless, just the NFAT motif from the GM420 element was sufficient to form a DH site within chromatin even in the absence of the AP-1 site. Hence, NFAT has the potential to cooperate with other transcription factors by promoting chromatin remodelling and increasing accessibility at inducible regulatory elements.

Collaboration


Dive into the Andrew G. Bert's collaboration.

Top Co-Authors

Avatar

Gregory J. Goodall

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip A. Gregory

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasha Kolesnikoff

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge