Andrew G. Bunn
Western Washington University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew G. Bunn.
Nature Climate Change | 2013
Liang Xu; Ranga B. Myneni; F. S. Chapin; Terry V. Callaghan; Jorge E. Pinzon; Compton J. Tucker; Zaichun Zhu; Jian Bi; Philippe Ciais; Hans Tømmervik; Eugénie S. Euskirchen; Bruce C. Forbes; Shilong Piao; Bruce T. Anderson; Sangram Ganguly; Ramakrishna R. Nemani; Scott J. Goetz; P.S.A. Beck; Andrew G. Bunn; Chunxiang Cao; Julienne Stroeve
Pronounced increases in winter temperature result in lower seasonal temperature differences, with implications for vegetation seasonality and productivity. Research now indicates that temperature and vegetation seasonality in northern ecosystems have diminished to an extent equivalent to a southerly shift of 4°– 7° in latitude, and may reach the equivalent of up to 20° over the twenty-first century.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Matthew W. Salzer; Malcolm K. Hughes; Andrew G. Bunn; Kurt F. Kipfmueller
Great Basin bristlecone pine (Pinus longaeva) at 3 sites in western North America near the upper elevation limit of tree growth showed ring growth in the second half of the 20th century that was greater than during any other 50-year period in the last 3,700 years. The accelerated growth is suggestive of an environmental change unprecedented in millennia. The high growth is not overestimated because of standardization techniques, and it is unlikely that it is a result of a change in tree growth form or that it is predominantly caused by CO2 fertilization. The growth surge has occurred only in a limited elevational band within ≈150 m of upper treeline, regardless of treeline elevation. Both an independent proxy record of temperature and high-elevation meteorological temperature data are positively and significantly correlated with upper-treeline ring width both before and during the high-growth interval. Increasing temperature at high elevations is likely a prominent factor in the modern unprecedented level of growth for Pinus longaeva at these sites.
Environmental Research Letters | 2007
R. A. Houghton; D. Butman; Andrew G. Bunn; Olga N. Krankina; P. Schlesinger; T. A. Stone
The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m × 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass.
Physical Geography | 2007
George P. Malanson; David Butler; Daniel B. Fagre; Stephen J. Walsh; Diana F. Tomback; Lori D. Daniels; Lynn M. Resler; William K. Smith; Daniel J. Weiss; David L. Peterson; Andrew G. Bunn; Christopher A. Hiemstra; Daniel Liptzin; Patrick S. Bourgeron; Zehao Shen; Constance I. Millar
Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree dieback—depend on microsite patterns. Growth forms affect wind and snow, and so develop positive and negative feedback loops that create these microsites. As a result, complex landscape patterns are generated at multiple spatial scales. Although these mechanistic processes are fundamentally the same for all forest-tundra ecotones across western North America, factors such as prior climate, underlying geology and geomorphology, and genetic constraints of dominant tree species lead to geographic differences in the responses of particular ecotones to climate change.
Journal of Climate | 2011
Gregory T. Pederson; Stephen T. Gray; Toby R. Ault; Wendy Marsh; Daniel B. Fagre; Andrew G. Bunn; Connie A. Woodhouse; Lisa J. Graumlich
Abstract The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and biophysical processes in high-mountain environments. This study investigates oceanic and atmospheric controls underlying changes in timing, variability, and trends documented across the entire hydroclimatic-monitoring system within critical NRM watersheds. Analyses were conducted using records from 25 snow telemetry (SNOTEL) stations, 148 1 April snow course records, stream gauge records from 14 relatively unimpaired rivers, and 37 valley meteorological stations. Over the past four decades, midelevation SNOTEL records show a tendency toward decreased snowpack with peak snow water equivalent (SWE) arriving and melting out earlier. Temperature records show significant seasonal and annual decreases in the number of frost days (days ≤0°C) and changes in spring minim...
Eos, Transactions American Geophysical Union | 2007
Andrew G. Bunn; Scott J. Goetz; John S. Kimball; Ke Zhang
The northern high latitudes are an area of particular importance to global climate change. As a system dependent on freezing conditions, the top of the planet contains vast amounts of carbon in biomass, soils, and permafrost that have the potential to interact with the atmosphere through the biosphere, hydrosphere, lithosphere, and cryosphere. If released en masse, this carbon would greatly exacerbate the levels of greenhouse gases in the atmosphere. Over the past 2 years, a growing body of research has provided evidence of substantial but idiosyncratic environmental changes, with some surprising aspects, across the region. This article reviews some recent findings and presents a new analysis of northern vegetation photosynthetic and productivity trends tracked from Earthobserving satellites.
Journal of Geophysical Research | 2011
Logan T. Berner; Pieter S. A. Beck; Andrew G. Bunn; Andrea H. Lloyd; Scott J. Goetz
[1] Vegetation in northern high latitudes affects regional and global climate through energy partitioning and carbon storage. Spaceborne observations of vegetation, largely based on the normalized difference vegetation index (NDVI), suggest decreased productivity during recent decades in many regions of the Eurasian and North American boreal forests. To improve interpretation of NDVI trends over forest regions, we examined the relationship between NDVI from the advanced very high resolution radiometers and tree ring width measurements, a proxy of tree productivity. We collected tree core samples from spruce, pine, and larch at 22 sites in northeast Russia and northwest Canada. Annual growth rings were measured and used to generate site‐level ring width index (RWI) chronologies. Correlation analysis was used to assess the association between RWI and summer NDVI from 1982 to 2008, while linear regression was used to examine trends in both measurements. The correlation between NDVI and RWI was highly variable across sites, though consistently positive (r = 0.43, SD = 0.19, n = 27). We observed significant temporal autocorrelation in both NDVI and RWI measurements at sites with evergreen conifers (spruce and pine), though weak autocorrelation at sites with deciduous conifers (larch). No sites exhibited a positive trend in both NDVI and RWI, although five sites showed negative trends in both measurements. While there are technological and physiological limitations to this approach, these findings demonstrate a positive association between NDVI and tree ring measurements, as well as the importance of considering lagged effects when modeling vegetation productivity using satellite data.
Ecological Monographs | 2011
Nathan L. Stephenson; Phillip J. van Mantgem; Andrew G. Bunn; Howard Bruner; Mark E. Harmon; Kari E. B. O'Connell; Dean L. Urban; Jerry F. Franklin
At global and regional scales, tree mortality rates are positively correlated with forest net primary productivity (NPP). Yet causes of the correlation are unknown, in spite of potentially profound implications for our understanding of environmental controls of forest structure and dynamics and, more generally, our understanding of broad-scale environmental controls of population dynamics and ecosystem processes. Here we seek to shed light on the causes of geographic patterns in tree mortality rates, and we consider some implications of the positive correlation between mortality rates and NPP. To reach these ends, we present seven hypotheses potentially explaining the correlation, develop an approach to help distinguish among the hypotheses, and apply the approach in a case study comparing a tropical and temperate forest. Based on our case study and literature synthesis, we conclude that no single mechanism controls geographic patterns of tree mortality rates. At least four different mechanisms may be at play, with the dominant mechanisms depending on whether the underlying productivity gradients are caused by climate or soil fertility. Two of the mechanisms are consequences of environmental selection for certain combinations of life-history traits, reflecting trade-offs between growth and defense (along edaphic productivity gradients) and between reproduction and persistence (as manifested in the adult tree stature continuum along climatic and edaphic gradients). The remaining two mechanisms are consequences of environmental influences on the nature and strength of ecological interactions: competition (along edaphic gradients) and pressure from plant enemies (along climatic gradients). For only one of these four mechanisms, competition, can high mortality rates be considered to be a relatively direct consequence of high NPP. The remaining mechanisms force us to adopt a different view of causality, in which tree growth rates and probability of mortality can vary with at least a degree of independence along productivity gradients. In many cases, rather than being a direct cause of high mortality rates, NPP may remain high in spite of high mortality rates. The independent influence of plant enemies and other factors helps explain why forest biomass can show little correlation, or even negative correlation, with forest NPP.
Photogrammetric Engineering and Remote Sensing | 2006
Michael Zambon; Rick L. Lawrence; Andrew G. Bunn; Scott L. Powell
Rule-based classification using classification tree analysis (CTA) is increasingly applied to remotely sensed data. CTA employs splitting rules to construct decision trees using training data as input. Results are then used for image classification. Software implementations of CTA offer different splitting rules and provide practitioners little guidance for their selection. We evaluated classification accuracy from four commonly used splitting rules and three types of imagery. Overall accuracies within data types varied less than 6 percent. Pairwise comparisons of kappa statistics indicated no significant differences (p-value � 0.05). Individual class accuracies, measured by user’s and producer’s accuracy, however, varied among methods. The entropy and twoing splitting rules most often accounted for the poorest performing classes. Based on analysis of the structure of the rules and the results from our three data sets, when the software provides the option, we recommend the gini and class probability rules for classification of remotely sensed data.
Archive | 2010
Scott J. Goetz; Howard E. Epstein; Uma S. Bhatt; Gensuo Jia; Jed O. Kaplan; Heike Lischke; Qin Yu; Andrew G. Bunn; Andrea H. Lloyd; Domingo Alcaraz-Segura; Pieter S. A. Beck; Josefino C. Comiso; Martha K. Raynolds; Donald A. Walker
This chapter provides an overview of observed changes in vegetation productivity in Arctic tundra and boreal forest ecosystems over the past 3 decades, based on satellite remote sensing and other observational records, and relates these to climate variables and sea ice conditions. The emerging patterns and relationships are often complex but clearly reveal a contrast in the response of the tundra and boreal biomes to recent climate change, with the tundra showing increases and undisturbed boreal forests mostly reductions in productivity. The possible reasons for this divergence are discussed and the consequences of continued climate warming for the vegetation in the Arctic region assessed using ecosystem models, both at the biome-scale and at high spatial resolution focussing on plant functional types in the tundra and the tundra-forest ecotones.