Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew I. Selwood is active.

Publication


Featured researches published by Andrew I. Selwood.


Journal of Agricultural and Food Chemistry | 2010

Isolation, structural determination and acute toxicity of pinnatoxins E, F and G.

Andrew I. Selwood; Christopher O. Miles; Alistair L. Wilkins; Roel van Ginkel; Rex Munday; Frode Rise; Paul McNabb

Pinnatoxins and pteriatoxins are a group of cyclic imine toxins that have hitherto only been isolated from Japanese shellfish. As with other cyclic imine shellfish toxins, pinnatoxins cause rapid death in the mouse bioassay for lipophilic shellfish toxins, but there is no evidence directly linking these compounds to human illness. We have identified the known pinnatoxins A (1) and D (6), and the novel pinnatoxins E (7), F (8) and G (5), in a range of shellfish and environmental samples from Australia and New Zealand using LC-MS. After isolation from the digestive glands of Pacific oysters, the structures of the novel pinnatoxins were determined by mass spectrometry and NMR spectroscopy, and their LD(50) values were evaluated by ip administration to mice. Examination of the toxin structures, together with analysis of environmental samples, suggests that pinnatoxins F and G are produced separately in different dinoflagellates. Furthermore, it appears probable that pinnatoxin F (8) is the progenitor of pinnatoxins D (6) and E (7), and that pinnatoxin G (6) is the progenitor of both pinnatoxins A-C (1 and 2) and pteriatoxins A-C (3 and 4), via metabolic and hydrolytic transformations in shellfish.


Journal of Chromatography A | 2015

Development of a sensitive and selective liquid chromatography–mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction

Michael J. Boundy; Andrew I. Selwood; D. Tim Harwood; Paul McNabb; Andrew D. Turner

Routine regulatory monitoring of paralytic shellfish toxins (PST) commonly employs oxidative derivitisation and complex liquid chromatography fluorescence detection methods (LC-FL). The pre-column oxidation LC-FL method is currently implemented in New Zealand and the United Kingdom. When using this method positive samples are fractionated and two different oxidations are required to confirm the identity and quantity of each PST analogue present. There is a need for alternative methods that are simpler, provide faster turnaround times and have improved detection limits. Hydrophilic interaction liquid chromatography (HILIC) HPLC-MS/MS analysis of PST has been used for research purposes, but high detection limits and substantial sample matrix issues have prevented it from becoming a viable alternative for routine monitoring purposes. We have developed a HILIC UPLC-MS/MS method for paralytic shellfish toxins with an optimised desalting clean-up procedure on inexpensive carbon solid phase extraction cartridges for reduction of matrix interferences. This represents a major technical breakthrough and allows sensitive, selective and rapid analysis of paralytic shellfish toxins from a variety of sample types, including many commercially produced bivalve molluscan shellfish species. Additionally, this analytical approach avoids the need for complex calculations to determine sample toxicity, as unlike other methods each PST analogue is able to be quantified as a single resolved peak. This article presents the method development and optimisation information. A thorough single laboratory validation study has subsequently been performed and this data will be presented elsewhere.


Applied and Environmental Microbiology | 2008

Widespread Distribution and Identification of Eight Novel Microcystins in Antarctic Cyanobacterial Mats

Susanna A. Wood; Douglas O. Mountfort; Andrew I. Selwood; Patrick T. Holland; Jonathan Puddick; S. Craig Cary

ABSTRACT The microcystin (MC) content and cyanobacterial community structure of Antarctic microbial mat samples collected from 40 ponds, lakes, and hydroterrestrial environments were investigated. Samples were collected from Bratina Island and four of the Dry Valleys, Wright, Victoria, Miers, and Marshall. Enzyme-linked immunosorbent assays (ELISAs), liquid chromatography-mass spectrometry (LC-MS), and protein phosphatase 2A (PP-2A) inhibition assays resulted in the identification of low levels (1 to 16 mg/kg [dry weight]) of MCs in all samples. A plot of indicative potencies of MCs (PP-2A inhibition assay/ELISA ratio) versus total MCs (ELISA) showed a general decrease in potency, as total MC levels increased, and a clustering of values from discrete geographic locations. LC-tandem MS analysis on selected samples identified eight novel MC congeners. The low-energy collisional activation spectra were consistent with variants of [d-Asp3] MC-RR and [d-Asp3] MC-LR containing glycine [Gly1] rather than alanine and combinations of homoarginine [hAr2] or acetyldemethyl 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid (acetyldemethyl ADDA) [ADMAdda5] substitutions. Nostoc sp. was identified as a MC producer using PCR amplification of a region of the 16S rRNA gene and the aminotransferase domain of the mcyE gene. Automated ribosomal intergenic spacer analysis (ARISA) was undertaken to enable a comparison of cyanobacterial mat community structure from distant geographical locations. Two-dimensional multidimensional scaling ordination analysis of the ARISA data showed that in general, samples from the same geographic location tended to cluster together. ARISA also enabled the putative identification of the MC-producing Nostoc sp. from multiple samples.


Toxicon | 2010

Detection of tetrodotoxin from the grey side-gilled sea slug - Pleurobranchaea maculata, and associated dog neurotoxicosis on beaches adjacent to the Hauraki Gulf, Auckland, New Zealand

Paul McNabb; Andrew I. Selwood; Rex Munday; Susanna A. Wood; David I. Taylor; Lincoln MacKenzie; Roel van Ginkel; Lesley Rhodes; Chris Cornelisen; Kevin Heasman; Patrick T. Holland; Caleb King

Investigations into a series of dog poisonings on beaches in Auckland, North Island, New Zealand, resulted in the identification of tetrodotoxin (TTX) in the grey side-gilled sea slug, Pleurobranchaea maculata. The levels of TTX in P. maculata, assayed by liquid chromatography-mass spectrometry (LC-MS) ranged from 91 to 850 mg kg(-1) with a median level of 365 mg kg(-1) (n = 12). In two of the dog poisoning cases, vomit and gastrointestinal contents were found to contain TTX. Adult P. maculata were maintained in aquaria for several weeks. Levels of TTX decreased only slightly with time. While in the aquaria, P. maculata spawned, with each individual producing 2-4 egg masses. The egg masses and 2-week old larvae also contained TTX. Tests for other marine toxins were negative and no other organisms from the area contained TTX. This is the first time TTX has been identified in New Zealand and the first detection of TTX in an opisthobranch.


Journal of AOAC International | 2015

Single-Laboratory Validation of a Multitoxin Ultra-Performance LC-Hydrophilic Interaction LC-MS/MS Method for Quantitation of Paralytic Shellfish Toxins in Bivalve Shellfish.

Andrew D. Turner; Paul McNabb; Harwood Dt; Andrew I. Selwood; Michael J. Boundy

A single-laboratory validation study was conducted for the hydrophilic interaction-LC-MS/MS analysis of paralytic shellfish toxins (PSTs) in bivalve shellfish. The method was developed as an alternative to the precolumn oxidation AOAC 2005.06 and postcolumn oxidation AOAC 2011.02 LC with fluorescence detection methods, receptor binding assay AOAC 2011.27, as well as the mouse bioassay AOAC 959.08. PSTs assessed were saxitoxin, neosaxitoxin, deoxydecarbamoylsaxitoxin, decarbamoylsaxitoxin, decarbamoylneosaxitoxin, gonyautoxins 1-6, decarbamoylgonyautoxins 2-3, and N-sulfocarbamoyl gonyautoxins 2&3. The method also included the determination of decarbamoylgonyautoxins 1&4, N-sulfocarbamoyl gonyautoxins 1&4, and M toxins. Twelve commercially produced bivalve species from both New Zealand and the United Kingdom were assessed, including mussels, oysters, scallops, and clams. Validation studies demonstrated acceptable method performance characteristics for specificity, linearity, recovery, repeatability, and within-laboratory reproducibility. LOD and LOQ were significantly improved in comparison to current fluorescence-based detection methods, and the method was shown to be rugged. The method performed well in comparison to AOAC 2005.06, with evidence obtained from both comparative analysis of 1141 PST-contaminated samples and successful participation in proficiency testing schemes. The method is suitable for use in regulatory testing and will be submitted for an AOAC collaborative study.


Neuropharmacology | 2012

Comparison of acetylcholine receptor interactions of the marine toxins, 13-desmethylspirolide C and gymnodimine

Terry A. Hauser; Christopher D. Hepler; David C. Kombo; Vladimir P. Grinevich; Melanie N. Kiser; Dawn N. Hooker; Jiahui Zhang; Douglas O. Mountfort; Andrew I. Selwood; S. Rao Akireddy; Sharon R. Letchworth; Daniel Yohannes

The interaction of 13-desmethylspirolide C (SPX-desMe-C) and gymnodimine with several nicotinic and muscarinic acetylcholine receptors was investigated. Interaction at the muscarinic receptors was minimal. At nicotinic receptors, both SPX-desMe-C and gymnodimine displayed greatest affinity for the α7 receptor. The rank order for binding affinity (Ki) for SPX-desMe-C was α7 > α6β3β4α5 >> rat α3β4, α1βγδ > α4β4, human α3β4 > human α4β2 > rat α4β2 and for gymnodimine was α7, α6β3β4α5 > rat α3β4 > human α3β4, α4β4 > rat α4β2, human α4β2 > α1βγδ. Both molecules antagonized agonist-induced nicotinic responses. The antagonism rank order of potency (IC(50)) for SPX-desMe-C was α7 > low sensitivity (LS) α4β2 > human α3β4 > high sensitivity (HS) α4β2, α1βγδ > α4β4 > rat α3β4 and for gymnodimine was LS α4β2 > human α3β4 > α7 > HS α4β2 > α4β4 > rat α3β4 > α1βγδ. Neither gymnodimine nor SPX-desMe-C antagonism could be surmounted by increasing concentrations of nicotine. To elucidate the nature of this insurmountable blockade, we carried out homology modelling and molecular docking studies of both ligands with α7 nAChR. Their very high binding affinity results from very tight hydrophobic enclosures, in addition to previously reported hydrogen-bond and cation-π interactions. Also, the higher the hydrophilic surface area of the binding site of nAChRs, the weaker the binding affinity of both ligands. Together these results show the targets of action are nicotinic and define these marine toxins as additional tools to advance our understanding regarding interactions between antagonists and the nAChR ligand binding domain.


Toxicon | 2012

A sensitive assay for palytoxins, ovatoxins and ostreocins using LC-MS/ MS analysis of cleavage fragments from micro-scale oxidation

Andrew I. Selwood; Roel van Ginkel; D. Tim Harwood; Paul McNabb; Lesley R. Rhodes; Patrick T. Holland

Palytoxin is a highly toxic non-proteinaceous marine natural product that can pass through the food chain and result in human illnesses. A recent review by the European Food Safety Authority concluded that palytoxin requires regulation in seafood and a limit of 30 μg kg⁻¹ for shellfish flesh was suggested. Current methods based on LC-MS detection of intact palytoxins do not have sufficient sensitivity to enforce this limit for palytoxin. To improve sensitivity for trace analysis, a novel screen approach has been developed that uses LC-MS/MS analysis of substructures generated by oxidative cleavage of vicinal diol groups present in the intact toxin. Oxidation of palytoxins, ovatoxins or ostreocins using periodic acid generates two nitrogen-containing aldehyde fragments; an amino aldehyde common to these toxins, and an amide aldehyde that may vary depending on toxin type. Conditions for micro-scale oxidation of palytoxin were optimised, which include a novel SPE cleanup and on-column oxidation step. Rapid analysis of cleavage fragments was established using LC-MS/MS. Linear calibrations were established for the amino aldehyde from a palytoxin reference standard, which is suitable for all known palytoxin-like compounds, and for the confirmatory amide aldehydes of palytoxin and ostreocin-D. Palytoxin recoveries (at 10 μg kg⁻¹) from shellfish and fish tissues were 114-119% (as amine aldehyde) and 90-115% (as amide aldehyde) with RSDs for both of ≤ 18% (all tissues, n = 12). The method LOD was determined to be approximately 1 ng mL⁻¹ and the LOQ 4 ng mL⁻¹, which corresponds to 10 μg kg⁻¹ in tissue (flesh of shellfish or fish). The method has potential for use in research and is sufficiently sensitive for regulatory testing, should it be required.


Toxicon | 2008

Comparative toxicity to mice of domoic acid and isodomoic acids A, B and C

Rex Munday; Patrick T. Holland; Paul McNabb; Andrew I. Selwood; Lesley Rhodes

Seafood in many parts of the world may become contaminated with high levels of domoic acid and domoic acid isomers, and such seafood has been shown to cause toxic effects in humans and in marine animals. Domoic acid itself has been held responsible for the observed effects, although the possible contribution of the isomers to toxicity has not been investigated. In the present study, the acute intraperitoneal toxicity of isodomoic acid C in mice was found to be lower than that of domoic acid. Furthermore, the severities of the behavioural changes induced by isodomoic acids A, B and C were all much lower than that of domoic acid itself, suggesting that these substances pose relatively little risk to human or animal health.


Chemical Research in Toxicology | 2008

Semisynthesis of S-desoxybrevetoxin-B2 and brevetoxin-B2, and assessment of their acute toxicities.

Andrew I. Selwood; Roel van Ginkel; Alistair L. Wilkins; Rex Munday; John S. Ramsdell; Dwayne J. Jensen; Janine M. Cooney; Christopher O. Miles

Brevetoxins are neurotoxins associated with blooms of marine algae such as Karenia brevis and can accumulate in the marine food chain, causing intoxication of marine animals and people consuming seafood. Brevetoxin-B2 ( 5) is a toxic metabolite produced in shellfish exposed to algae that contain brevetoxin-B ( 1). S-Desoxybrevetoxin-B2 ( 4) has been proposed as a cometabolite produced during this transformation, and while LC-MS analyses suggest its presence in shellfish, it has not yet been isolated and characterized. Studies on these materials are severely constrained by the difficulty of obtaining and purifying them from natural sources. We have developed a convenient one-pot conversion of commercially available brevetoxin-B ( 1) into S-desoxybrevetoxin-B2 ( 4), and a simple method for converting 4 into brevetoxin-B2 ( 5). Full NMR and mass-spectral characterization of 4 and 5 confirmed their structures and showed that the ratio of diastereoisomers in the synthetic 4 and 5 was similar to that observed in naturally contaminated shellfish. The LD 50 values for 4, 5, and dihydrobrevetoxin-B ( 6) by ip injection in mice were 211, 400, and 250 microg/kg, respectively. The methodology for synthesis of brevetoxin metabolites should greatly facilitate toxicological, biochemical and immunochemical studies of these substances, as well as the production of analytical standards.


Toxicon | 2010

Bioassay methods for detection of N-palmitoylbrevetoxin-B2 (BTX-B4)

Marie-Yasmine Dechraoui Bottein; Jennifer Maucher Fuquay; Rex Munday; Andrew I. Selwood; Roel van Ginkel; Christopher O. Miles; Jared I. Loader; Alistair L. Wilkins; John S. Ramsdell

Brevetoxins (BTXs) are a class of cyclic polyether toxins produced by the dinoflagellate Karenia brevis. These substances are subject to extensive conjugative metabolism in shellfish. BTX-B forms a conjugate with cysteine and is oxidized and reduced to yield BTX-B2, which is further modified by fatty acid addition via cysteine amide linkage to give biologically active brevetoxin metabolites. In this study, we evaluated the commonly used in vitro (ELISA, radioimmunoassay, receptor binding assay and N2A cytotoxicity assay) and in vivo mouse brevetoxin bioassays for the detection of the brevetoxin fatty acid conjugate N-palmitoylBTX-B2, and compared the results to those for dihydroBTX-B and BTX-B2. The receptor binding assay for N-palmitoylBTX-B2 showed comparable sensitivity to that for dihydroBTX-B, and an 11-fold higher sensitivity than for BTX-B2. Although the ELISA showed similarly high sensitivity to dihydroBTX-B and BTX-B2, with EC(50) values of ca. 0.26 ng/ml, it was 23 times less sensitive to N-palmitoylBTX-B2. On the other hand, the N2A cytotoxicity assay was highly sensitive to N-palmitoylBTX-B2, with an EC(50) of 0.15 ng/ml, but was 12- and 40-fold less sensitive to dihydroBTX-B and BTX-B2, respectively. The relative sensitivity of the N2A cytotoxicity assay for each of these metabolites paralleled that of the mouse bioassay (relative LD(50) values 1:20:30 for N-palmitoylBTX-B2:dihydroBTX-B:BTX-B2). We conclude that the most sensitive bioassay for dihydroBTX-B and BTX-B2 is the ELISA, whereas the N2A cytotoxicity assay is most sensitive for N-palmitoylBTX-B2.

Collaboration


Dive into the Andrew I. Selwood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher O. Miles

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge