Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Bredemeyer is active.

Publication


Featured researches published by Andrew J. Bredemeyer.


The Journal of Molecular Diagnostics | 2014

Validation of a Next-Generation Sequencing Assay for Clinical Molecular Oncology

Catherine E. Cottrell; Hussam Al-Kateb; Andrew J. Bredemeyer; Eric J. Duncavage; David H. Spencer; Haley J. Abel; Christina M. Lockwood; Ian S. Hagemann; Stephanie M. O’Guin; Lauren C. Burcea; Christopher S. Sawyer; Dayna M. Oschwald; Jennifer L. Stratman; Dorie A. Sher; Mark R. Johnson; Justin T. Brown; Paul F. Cliften; Bijoy George; Leslie McIntosh; Savita Shrivastava; TuDung T. Nguyen; Jacqueline E. Payton; Mark A. Watson; Seth D. Crosby; Richard D. Head; Robi D. Mitra; Rakesh Nagarajan; Shashikant Kulkarni; Karen Seibert; Herbert W. Virgin

Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci. We present clinical validation of the assay and a detailed framework for design and validation of similar clinical assays. Deep sequencing of 78 tumor specimens (≥ 1000× average unique coverage across the capture region) achieved high sensitivity for detecting somatic variants at low allele fraction (AF). Validation revealed sensitivities and specificities of 100% for detection of single-nucleotide variants (SNVs) within coding regions, compared with SNP array sequence data (95% CI = 83.4-100.0 for sensitivity and 94.2-100.0 for specificity) or whole-genome sequencing (95% CI = 89.1-100.0 for sensitivity and 99.9-100.0 for specificity) of HapMap samples. Sensitivity for detecting variants at an observed 10% AF was 100% (95% CI = 93.2-100.0) in HapMap mixes. Analysis of 15 masked specimens harboring clinically reported variants yielded concordant calls for 13/13 variants at AF of ≥ 15%. The WUCaMP assay is a robust and sensitive method to detect somatic variants of clinical significance in molecular oncology laboratories, with reduced time and cost of genetic analysis allowing for strategic patient management.


Cancer | 2015

Clinical next-generation sequencing in patients with non-small cell lung cancer.

Ian S. Hagemann; Siddhartha Devarakonda; Christina M. Lockwood; David H. Spencer; Kalin Guebert; Andrew J. Bredemeyer; Hussam Al-Kateb; TuDung T. Nguyen; Eric J. Duncavage; Catherine E. Cottrell; Shashikant Kulkarni; Rakesh Nagarajan; Karen Seibert; Maria Q. Baggstrom; Saiama N. Waqar; John D. Pfeifer; Daniel Morgensztern; Ramaswamy Govindan

A clinical assay was implemented to perform next‐generation sequencing (NGS) of genes commonly mutated in multiple cancer types. This report describes the feasibility and diagnostic yield of this assay in 381 consecutive patients with non–small cell lung cancer (NSCLC).


Developmental Biology | 2009

The gastric epithelial progenitor cell niche and differentiation of the zymogenic (chief) cell lineage

Andrew J. Bredemeyer; Jessica H. Geahlen; Victoria G. Weis; Won Jae Huh; Bernd H. Zinselmeyer; Subhashini Srivatsan; Mark J. Miller; Andrey S. Shaw; Jason C. Mills

In the mammalian gastrointestinal tract, the cell fate decisions that specify the development of multiple, diverse lineages are governed in large part by interactions of stem and early lineage progenitor cells with their microenvironment, or niche. Here, we show that the gastric parietal cell (PC) is a key cellular component of the previously undescribed niche for the gastric epithelial neck cell, the progenitor of the digestive enzyme secreting zymogenic (chief) cell (ZC). Genetic ablation of PCs led to failed patterning of the entire zymogenic lineage: progenitors showed premature expression of differentiated cell markers, and fully differentiated ZCs failed to develop. We developed a separate mouse model in which PCs localized not only to the progenitor niche, but also ectopically to the gastric unit base, which is normally occupied by terminally differentiated ZCs. Surprisingly, these mislocalized PCs did not maintain adjacent zymogenic lineage cells in the progenitor state, demonstrating that PCs, though necessary, are not sufficient to define the progenitor niche. We induced this PC mislocalization by knocking out the cytoskeleton-regulating gene Cd2ap in Mist1(-/-) mice, which led to aberrant E-cadherin localization in ZCs, irregular ZC-ZC junctions, and disruption of the ZC monolayer by PCs. Thus, the characteristic histology of the gastric unit, with PCs in the middle and ZCs in the base, may depend on establishment of an ordered adherens junction network in ZCs as they migrate into the base.


Gastroenterology | 2010

XBP1 Controls Maturation of Gastric Zymogenic Cells by Induction of MIST1 and Expansion of the Rough Endoplasmic Reticulum

Won Jae Huh; Emel Esen; Jessica H. Geahlen; Andrew J. Bredemeyer; Ann–Hwee Lee; Guanglu Shi; Stephen F. Konieczny; Laurie H. Glimcher; Jason C. Mills

BACKGROUND & AIMS The transition of gastric epithelial mucous neck cells (NCs) to digestive enzyme-secreting zymogenic cells (ZCs) involves an increase in rough endoplasmic reticulum (ER) and formation of many large secretory vesicles. The transcription factor MIST1 is required for granulogenesis of ZCs. The transcription factor XBP1 binds the Mist1 promoter and induces its expression in vitro and expands the ER in other cell types. We investigated whether XBP1 activates Mist1 to regulate ZC differentiation. METHODS Xbp1 was inducibly deleted in mice using a tamoxifen/Cre-loxP system; effects on ZC size and structure (ER and granule formation) and gastric differentiation were studied and quantified for up to 13 months after deletion using morphologic, immunofluorescence, quantitative reverse-transcriptase polymerase chain reaction, and immunoblot analyses. Interactions between XBP1 and the Mist1 promoter were studied by chromatin immunoprecipitation from mouse stomach and in XBP1-transfected gastric cell lines. RESULTS Tamoxifen-induced deletion of Xbp1 (Xbp1Δ) did not affect survival of ZCs but prevented formation of their structure. Xbp1Δ ZCs shrank 4-fold, compared with those of wild-type mice, with granulogenesis and cell shape abnormalities and disrupted rough ER. XBP1 was required and sufficient for transcriptional activation of MIST1. ZCs that developed in the absence of XBP1 induced ZC markers (intrinsic factor, pepsinogen C) but showed abnormal retention of progenitor NC markers. CONCLUSIONS XBP1 controls the transcriptional regulation of ZC structural development; it expands the lamellar rough ER and induces MIST1 expression to regulate formation of large granules. XBP1 is also required for loss of mucous NC markers as ZCs form.


The Journal of Molecular Diagnostics | 2014

Performance of Common Analysis Methods for Detecting Low-Frequency Single Nucleotide Variants in Targeted Next-Generation Sequence Data

David H. Spencer; Manoj Tyagi; Francesco Vallania; Andrew J. Bredemeyer; John D. Pfeifer; Rob D. Mitra; Eric J. Duncavage

Next-generation sequencing (NGS) is becoming a common approach for clinical testing of oncology specimens for mutations in cancer genes. Unlike inherited variants, cancer mutations may occur at low frequencies because of contamination from normal cells or tumor heterogeneity and can therefore be challenging to detect using common NGS analysis tools, which are often designed for constitutional genomic studies. We generated high-coverage (>1000×) NGS data from synthetic DNA mixtures with variant allele fractions (VAFs) of 25% to 2.5% to assess the performance of four variant callers, SAMtools, Genome Analysis Toolkit, VarScan2, and SPLINTER, in detecting low-frequency variants. SAMtools had the lowest sensitivity and detected only 49% of variants with VAFs of approximately 25%; whereas the Genome Analysis Toolkit, VarScan2, and SPLINTER detected at least 94% of variants with VAFs of approximately 10%. VarScan2 and SPLINTER achieved sensitivities of 97% and 89%, respectively, for variants with observed VAFs of 1% to 8%, with >98% sensitivity and >99% positive predictive value in coding regions. Coverage analysis demonstrated that >500× coverage was required for optimal performance. The specificity of SPLINTER improved with higher coverage, whereas VarScan2 yielded more false positive results at high coverage levels, although this effect was abrogated by removing low-quality reads before variant identification. Finally, we demonstrate the utility of high-sensitivity variant callers with data from 15 clinical lung cancers.


Molecular and Cellular Biology | 2010

RAB26 and RAB3D are direct transcriptional targets of MIST1 that regulate exocrine granule maturation

Xiaolin Tian; Ramon U. Jin; Andrew J. Bredemeyer; Edward J. Oates; Katarzyna M. Błażewska; Charles E. McKenna; Jason C. Mills

ABSTRACT Little is known about how differentiating cells reorganize their cellular structure to perform specialized physiological functions. MIST1, an evolutionarily conserved transcription factor, is required for the formation of large, specialized secretory vesicles in gastric zymogenic (chief) cells (ZCs) as they differentiate from their mucous neck cell progenitors. Here, we show that MIST1 binds to highly conserved CATATG E-boxes to directly activate transcription of 6 genes, including those encoding the small GTPases RAB26 and RAB3D. We next show that RAB26 and RAB3D expression is significantly downregulated in Mist1−/− ZCs, suggesting that MIST1 establishes large secretory granules by inducing RAB transcription. To test this hypothesis, we transfected human gastric cancer cell lines stably expressing MIST1 with red fluorescent protein (RFP)-tagged pepsinogen C, a key secretory product of ZCs. Those cells upregulate expression of RAB26 and RAB3D to form large secretory granules, whereas control, non-MIST1-expressing cells do not. Moreover, granule formation in MIST1-expressing cells requires RAB activity because treatment with a RAB prenylation inhibitor and transfection of dominant negative RAB26 abrogate granule formation. Together, our data establish the molecular process by which a transcription factor can directly induce fundamental cellular architecture changes by increasing transcription of specific cellular effectors that act to organize a unique subcellular compartment.


The Journal of Molecular Diagnostics | 2014

Detection of Gene Rearrangements in Targeted Clinical Next-Generation Sequencing

Haley J. Abel; Hussam Al-Kateb; Catherine E. Cottrell; Andrew J. Bredemeyer; Colin C. Pritchard; Allie H. Grossmann; Michelle L. Wallander; John D. Pfeifer; Christina M. Lockwood; Eric J. Duncavage

The identification of recurrent gene rearrangements in the clinical laboratory is the cornerstone for risk stratification and treatment decisions in many malignant tumors. Studies have reported that targeted next-generation sequencing assays have the potential to identify such rearrangements; however, their utility in the clinical laboratory is unknown. We examine the sensitivity and specificity of ALK and KMT2A (MLL) rearrangement detection by next-generation sequencing in the clinical laboratory. We analyzed a series of seven ALK rearranged cancers, six KMT2A rearranged leukemias, and 77 ALK/KMT2A rearrangement-negative cancers, previously tested by fluorescence in situ hybridization (FISH). Rearrangement detection was tested using publicly available software tools, including Breakdancer, ClusterFAST, CREST, and Hydra. Using Breakdancer and ClusterFAST, we detected ALK rearrangements in seven of seven FISH-positive cases and KMT2A rearrangements in six of six FISH-positive cases. Among the 77 ALK/KMT2A FISH-negative cases, no false-positive identifications were made by Breakdancer or ClusterFAST. Further, we identified one ALK rearranged case with a noncanonical intron 16 breakpoint, which is likely to affect its response to targeted inhibitors. We report that clinically relevant chromosomal rearrangements can be detected from targeted gene panel-based next-generation sequencing with sensitivity and specificity equivalent to that of FISH while providing finer-scale information and increased efficiency for molecular oncology testing.


Journal of Biological Chemistry | 2006

Hop Cleavage and Function in Granzyme B-induced Apoptosis

Andrew J. Bredemeyer; Patricia E. Carrigan; Todd A. Fehniger; David F. Smith; Timothy J. Ley

Granzyme B (GzmB) is a cytotoxic protease found in the granules of natural killer cells and cytotoxic T lymphocytes. GzmB cleaves multiple intracellular protein substrates, leading to caspase activation, DNA fragmentation, cytoskeletal instability, and rapid induction of target cell apoptosis. However, no known individual substrate is required for GzmB to induce apoptosis. GzmB is therefore thought to initiate multiple cell death pathways simultaneously to ensure the death of target cells. We previously identified Hop (Hsp70/Hsp90-organizing protein) as a GzmB substrate in a proteomic survey (Bredemeyer, A. J., Lewis, R. M., Malone, J. P., Davis, A. E., Gross, J., Townsend, R. R., and Ley, T. J. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 11785-11790). Hop is a co-chaperone for Hsp70 and Hsp90, which have been implicated in the negative regulation of apoptosis. We therefore hypothesized that Hop may have an anti-apoptotic function that is abolished upon cleavage, lowering the threshold for GzmB-induced apoptosis. Here, we show that Hop was cleaved directly by GzmB in vitro and in cells undergoing GzmB-induced apoptosis. Expression of the two cleavage fragments of Hop did not induce cell death. Although cleavage of Hop by GzmB destroyed Hop function in vitro, both cells overexpressing GzmB-resistant Hop and cells with a 90-95% reduction in Hop levels exhibited unaltered susceptibility to GzmB-induced death. We conclude that Hop per se does not set the threshold for susceptibility to GzmB-induced apoptosis. Although it is possible that Hop may be cleaved by GzmB as an “innocent bystander” during the induction of apoptosis, it may also act to facilitate apoptosis in concert with other GzmB substrates.


Physiological Genomics | 2011

Transcription factor MIST1 in terminal differentiation of mouse and human plasma cells

Benjamin J. Capoccia; Jochen K. Lennerz; Andrew J. Bredemeyer; Jeffery M. Klco; John L. Frater; Jason C. Mills

Despite their divergent developmental ancestry, plasma cells and gastric zymogenic (chief) cells share a common function: high-capacity secretion of protein. Here we show that both cell lineages share increased expression of a cassette of 269 genes, most of which regulate endoplasmic reticulum (ER) and Golgi function, and they both induce expression of the transcription factors X-box binding protein 1 (Xbp1) and Mist1 during terminal differentiation. XBP1 is known to augment plasma cell function by establishing rough ER, and MIST1 regulates secretory vesicle trafficking in zymogenic cells. We examined morphology and function of plasma cells in wild-type and Mist1(-/-) mice and found subtle differences in ER structure but no overall defect in plasma cell function, suggesting that Mist1 may function redundantly in plasma cells. We next reasoned that MIST1 might be useful as a novel and reliable marker of plasma cells. We found that MIST1 specifically labeled normal plasma cells in mouse and human tissues, and, moreover, its expression was also characteristic of plasma cell differentiation in a cohort of 12 human plasma cell neoplasms. Overall, our results show that MIST1 is enriched upon plasma cell differentiation as a part of a genetic program facilitating secretory cell function and also that MIST1 is a novel marker of normal and neoplastic plasma cells in mouse and human tissues.


American Journal of Clinical Pathology | 2015

Occult Specimen Contamination in Routine Clinical Next-Generation Sequencing Testing.

Jennifer K. Sehn; David H. Spencer; John D. Pfeifer; Andrew J. Bredemeyer; Catherine E. Cottrell; Haley J. Abel; Eric J. Duncavage

OBJECTIVES To evaluate the extent of human-to-human specimen contamination in clinical next-generation sequencing (NGS) data. METHODS Using haplotype analysis to detect specimen admixture, with orthogonal validation by short tandem repeat analysis, we determined the rate of clinically significant (>5%) DNA contamination in clinical NGS data from 296 consecutive cases. Haplotype analysis was performed using read haplotypes at common, closely spaced single-nucleotide polymorphisms in low linkage disequilibrium in the population, which were present in regions targeted by the clinical assay. Percent admixture was estimated based on frequencies of the read haplotypes at loci that showed evidence for contamination. RESULTS We identified nine (3%) cases with at least 5% DNA admixture. Three cases were bone marrow transplant patients known to be chimeric. Six admixed cases were incidents of contamination, and the rate of contamination was strongly correlated with DNA yield from the tissue specimen. CONCLUSIONS Human-human specimen contamination occurs in clinical NGS testing. Tools for detecting contamination in NGS sequence data should be integrated into clinical bioinformatics pipelines, especially as laboratories trend toward using smaller amounts of input DNA and reporting lower frequency variants. This study provides one estimate of the rate of clinically significant human-human specimen contamination in clinical NGS testing.

Collaboration


Dive into the Andrew J. Bredemeyer's collaboration.

Top Co-Authors

Avatar

Catherine E. Cottrell

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eric J. Duncavage

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jason C. Mills

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David H. Spencer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hussam Al-Kateb

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Ley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Pfeifer

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Won Jae Huh

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Shashikant Kulkarni

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge