Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Burghardt is active.

Publication


Featured researches published by Andrew J. Burghardt.


Bone | 2010

Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT☆

Andrew J. Burghardt; Helen R. Buie; Andres Laib; Sharmila Majumdar; Steven K. Boyd

Quantitative cortical microarchitectural end points are important for understanding structure-function relations in the context of fracture risk and therapeutic efficacy. This technique study details new image-processing methods to automatically segment and directly quantify cortical density, geometry, and microarchitecture from HR-pQCT images of the distal radius and tibia. An automated segmentation technique was developed to identify the periosteal and endosteal margins of the distal radius and tibia and detect intracortical pore space morphologically consistent with Haversian canals. The reproducibility of direct quantitative cortical bone indices based on this method was assessed in a pooled data set of 56 subjects with two repeat acquisitions for each site. The in vivo precision error was characterized using root mean square coefficient of variation (RMSCV%) from which the least significant change (LSC) was calculated. Bland-Altman plots were used to characterize bias in the precision estimates. The reproducibility of cortical density and cross-sectional area measures was high (RMSCV <1% and <1.5%, respectively) with good agreement between young and elder medians. The LSC for cortical porosity (Ct.Po) was somewhat smaller in the radius (0.58%) compared with the distal tibia (0.84%) and significantly different between young and elder medians in the distal tibia (LSC: 0.75% vs. 0.92%, p<0.001). The LSC for pore diameter and distribution (Po.Dm and Po.Dm.SD) ranged between 15 and 23 microm. Bland-Altman analysis revealed moderate bias for integral measures of area and volume but not for density or microarchitecture. This study indicates that HR-pQCT measures of cortical bone density and architecture can be measured in vivo with high reproducibility and limited bias across a biologically relevant range of values. The results of this study provide informative data for the design of future clinical studies of bone quality.


Journal of Bone and Mineral Research | 2009

Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia

Andrew J. Burghardt; Galateia J. Kazakia; Thomas M. Link; Sharmila Majumdar

Cortical bone contributes the majority of overall bone mass and bears the bulk of axial loads in the peripheral skeleton. Bone metabolic disorders often are manifested by cortical microstructural changes via osteonal remodeling and endocortical trabecularization. The goal of this study was to characterize intracortical porosity in a cross‐sectional patient cohort using novel quantitative computational methods applied to high‐resolution peripheral quantitative computed tomography (HR‐pQCT) images of the distal radius and tibia. The distal radius and tibia of 151 subjects (57 male, 94 female; 47 ± 16 years of age, range 20 to 78 years) were imaged using HR‐pQCT. Intracortical porosity (Ct.Po) was calculated as the pore volume normalized by the sum of the pore and cortical bone volume. Micro–finite element analysis (µFE) was used to simulate 1% uniaxial compression for two scenarios per data set: (1) the original structure and (2) the structure with intracortical porosity artificially occluded. Differential biomechanical indices for stiffness (ΔK), modulus (ΔE), failure load (ΔF), and cortical load fraction (ΔCt.LF) were calculated as the difference between original and occluded values. Regression analysis revealed that cortical porosity, as depicted by HR‐pQCT, exhibited moderate but significant age‐related dependence for both male and female cohorts (radius ρ = 0.7; tibia ρ = 0.5; p < .001). In contrast, standard cortical metrics (Ct.Th, Ct.Ar, and Ct.vBMD) were more weakly correlated or not significantly correlated with age in this population. Furthermore, differential µFE analysis revealed that the biomechanical deficit (ΔK) associated with cortical porosity was significantly higher for postmenopausal women than for premenopausal women (p < .001). Finally, porosity‐related measures provided the only significant decade‐wise discrimination in the radius for females in their fifties versus females in their sixties (p < .01). Several important conclusions can be drawn from these results. Age‐related differences in cortical porosity, as detected by HR‐pQCT, are more pronounced than differences in standard cortical metrics. The biomechanical significance of these structural differences increases with age for men and women and provides discriminatory information for menopause‐related bone quality effects.


The Journal of Clinical Endocrinology and Metabolism | 2010

High-Resolution Peripheral Quantitative Computed Tomographic Imaging of Cortical and Trabecular Bone Microarchitecture in Patients with Type 2 Diabetes Mellitus

Andrew J. Burghardt; Ahi Sema Issever; Ann V. Schwartz; Kevin A. Davis; Umesh Masharani; Sharmila Majumdar; Thomas M. Link

CONTEXT Cross-sectional epidemiological studies have found that patients with type 2 diabetes mellitus (T2DM) have a higher incidence of certain fragility fractures despite normal or elevated bone mineral density (BMD). OBJECTIVE In this study, high-resolution peripheral quantitative computed tomography was applied to characterize cortical and trabecular microarchitecture and biomechanics in the peripheral skeleton of female patients with T2DM. DESIGN AND SETTING A cross-sectional study was conducted in patients with T2DM recruited from a diabetic outpatient clinic. PARTICIPANTS Elderly female patients (age, 62.9 ± 7.7 yr) with a history of T2DM (n = 19) and age- and height-matched controls (n = 19) were recruited. OUTCOME MEASURES Subjects were imaged using high-resolution peripheral quantitative computed tomography at the distal radius and tibia. Quantitative measures of volumetric (BMD), cross-sectional geometry, trabecular and cortical microarchitecture were calculated. Additionally, compressive mechanical properties were determined by micro-finite element analysis. RESULTS Compared to the controls, the T2DM cohort had 10% higher trabecular volumetric BMD (P < 0.05) adjacent to the cortex and higher trabecular thickness in the tibia (13.8%; P < 0.05). Cortical porosity differences alone were consistent with impaired bone strength and were significant in the radius (>+50%; P < 0.05), whereas pore volume approached significance in the tibia (+118%; P = 0.1). CONCLUSION The results of this pilot investigation provide a potential explanation for the inability of standard BMD measures to explain the elevated fracture incidence in patients with T2DM. The findings suggest that T2DM may be associated with impaired resistance to bending loads due to inefficient redistribution of bone mass, characterized by loss of intracortical bone offset by an elevation in trabecular bone density.


Journal of Bone and Mineral Research | 2013

Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures.

Janina M. Patsch; Andrew J. Burghardt; Samuel P. Yap; Thomas Baum; Ann V. Schwartz; G.B. Joseph; Thomas M. Link

The primary goal of this study was to assess peripheral bone microarchitecture and strength in postmenopausal women with type 2 diabetes with fragility fractures (DMFx) and to compare them with postmenopausal women with type 2 diabetics without fractures (DM). Secondary goals were to assess differences in nondiabetic postmenopausal women with fragility fractures (Fx) and nondiabetic postmenopausal women without fragility fractures (Co), and in DM and Co women. Eighty women (mean age 61.3 ± 5.7 years) were recruited into these four groups (DMFx, DM, Fx, and Co; n = 20 per group). Participants underwent dual‐energy X‐ray absorptiometry (DXA) and high‐resolution peripheral quantitative computed tomography (HR‐pQCT) of the ultradistal and distal radius and tibia. In the HR‐pQCT images volumetric bone mineral density and cortical and trabecular structure measures, including cortical porosity, were calculated. Bone strength was estimated using micro–finite element analysis (µFEA). Differential strength estimates were obtained with and without open cortical pores. At the ultradistal and distal tibia, DMFx had greater intracortical pore volume (+52.6%, p = 0.009; +95.4%, p = 0.020), relative porosity (+58.1%, p = 0.005; +87.9%, p = 0.011) and endocortical bone surface (+10.9%, p = 0.031; +11.5%, p = 0.019) than DM. At the distal radius DMFx had 4.7‐fold greater relative porosity (p < 0.0001) than DM. At the ultradistal radius, intracortical pore volume was significantly higher in DMFx than DM (+67.8%, p = 0.018). DMFx also displayed larger trabecular heterogeneity (ultradistal radius: +36.8%, p = 0.035), and lower total and cortical BMD (ultradistal tibia: −12.6%, p = 0.031; −6.8%, p = 0.011) than DM. DMFx exhibited significantly higher pore‐related deficits in stiffness, failure load, and cortical load fraction at the ultradistal and distal tibia, and the distal radius than DM. Comparing nondiabetic Fx and Co, we only found a nonsignificant trend with increase in pore volume (+38.9%, p = 0.060) at the ultradistal radius. The results of our study suggest that severe deficits in cortical bone quality are responsible for fragility fractures in postmenopausal diabetic women.


Journal of Bone and Mineral Research | 2002

Changes in Bone Structure and Mass With Advancing Age in the Male C57BL/6J Mouse

Bernard P. Halloran; Virginia L. Ferguson; Steven J. Simske; Andrew J. Burghardt; Laura Venton; Sharmila Majumdar

To determine whether the mouse loses bone with aging and whether the changes mimic those observed in human aging, we examined the changes in the tibial metaphysis and diaphysis in the male C57BL/6J mouse over its life span using microcomputed tomography (μCT). Cancellous bone volume fraction (BV/TV) decreased 60% between 6 weeks and 24 months of age. Loss was characterized by decreased trabecular number (Tb.N), increased trabecular spacing (Tb.Sp), and decreased connectivity. Anisotropy decreased while the structure model index increased with age. Cortical bone thickness increased between 6 weeks and 6 months of age and then decreased continuously to 24 months (−12%). Cortical bone area (Ct.Ar) remained constant between 6 and 24 months. Fat‐free weight reached a peak at 12 months and gradually declined to 24 months. Total mass lost between 12 and 24 months reached 10%. Overall, the age‐related changes in skeletal mass and architecture in the mouse were remarkably similar to those seen in human aging. Furthermore, the rapid early loss of cancellous bone suggests that bone loss is not just associated with old age in the mouse but rather occurs as a continuum from early growth. We conclude that the C57BL/6J male mouse maybe a useful model to study at least some aspects of age‐related bone loss in humans.


Journal of Bone and Mineral Research | 2010

A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover†

Andrew J. Burghardt; Galateia J. Kazakia; Miki Sode; Anne E. de Papp; Thomas M. Link; Sharmila Majumdar

The goal of this study was to characterize longitudinal changes in bone microarchitecture and function in women treated with an established antifracture therapeutic. In this double‐blind, placebo‐controlled pilot study, 53 early postmenopausal women with low bone density (age = 56 ± 4 years; femoral neck T‐score = −1.5 ± 0.6) were monitored by high‐resolution peripheral quantitative computed tomography (HR‐pQCT) for 24 months following randomization to alendronate (ALN) or placebo (PBO) treatment groups. Subjects underwent annual HR‐pQCT imaging of the distal radius and tibia, dual‐energy X‐ray absorptiometry (DXA), and determination of biochemical markers of bone turnover (BSAP and uNTx). In addition to bone density and microarchitecture assessment, regional analysis, cortical porosity quantification, and micro‐finite‐element analysis were performed. After 24 months of treatment, at the distal tibia but not the radius, HR‐pQCT measures showed significant improvements over baseline in the ALN group, particularly densitometric measures in the cortical and trabecular compartments and endocortical geometry (cortical thickness and area, medullary area) (p < .05). Cortical volumetric bone mineral density (vBMD) in the tibia alone showed a significant difference between treatment groups after 24 months (p < .05); however, regionally, significant differences in Tb.vBMD, Tb.N, and Ct.Th were found for the lateral quadrant of the radius (p < .05). Spearman correlation analysis revealed that the biomechanical response to ALN in the radius and tibia was specifically associated with changes in trabecular microarchitecture (|ρ| = 0.51 to 0.80, p < .05), whereas PBO progression of bone loss was associated with a broad range of changes in density, geometry, and microarchitecture (|ρ| = 0.56 to 0.89, p < .05). Baseline cortical geometry and porosity measures best predicted ALN‐induced change in biomechanics at both sites (ρ > 0.48, p < .05). These findings suggest a more pronounced response to ALN in the tibia than in the radius, driven by trabecular and endocortical changes.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice

Loren G. Fong; Jennifer K. Ng; Margarita Meta; Nathan Coté; Shao H. Yang; Colin L. Stewart; Terry Sullivan; Andrew J. Burghardt; Sharmila Majumdar; Karen Reue; Martin O. Bergo; Stephen G. Young

Zmpste24 is a metalloproteinase required for the processing of prelamin A to lamin A, a structural component of the nuclear lamina. Zmpste24 deficiency results in the accumulation of prelamin A within cells, a complete loss of mature lamin A, and misshapen nuclear envelopes. Zmpste24-deficient (Zmpste24–/–) mice exhibit retarded growth, alopecia, micrognathia, dental abnormalities, osteolytic lesions in bones, and osteoporosis, which are phenotypes shared with Hutchinson–Gilford progeria syndrome, a human disease caused by the synthesis of a mutant prelamin A that cannot undergo processing to lamin A. Zmpste24–/– mice also develop muscle weakness. We hypothesized that prelamin A might be toxic and that its accumulation in Zmpste24–/– mice is responsible for all of the disease phenotypes. We further hypothesized that Zmpste24–/– mice with half-normal levels of prelamin A (Zmpste24–/– mice with one Lmna knockout allele) would be subjected to less toxicity and be protected from disease. Thus, we bred and analyzed Zmpste24–/–Lmna+/– mice. As expected, prelamin A levels in Zmpste24–/–Lmna+/– cells were significantly reduced. Zmpste24–/–Lmna+/– mice were entirely normal, lacking all disease phenotypes, and misshapen nuclei were less frequent in Zmpste24–/–Lmna+/– cells than in Zmpste24–/– cells. These data suggest that prelamin A is toxic and that reducing its levels by as little as 50% provides striking protection from disease.


Radiologic Clinics of North America | 2010

High-resolution Imaging Techniques for the Assessment of Osteoporosis

Roland Krug; Andrew J. Burghardt; Sharmila Majumdar; Thomas M. Link

The importance of assessing the bones microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in several publications. The high spatial resolution required to resolve the bones microstructure in a clinically feasible scan time is challenging. At present, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition, multidetector computed tomography has been used for high-resolution imaging of trabecular bone structure; however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements, and recent developments in this emerging field. Details regarding imaging protocols as well as image postprocessing methods for bone structure quantification are discussed.


Journal of Bone and Mineral Research | 2007

In Vivo Determination of Bone Structure in Postmenopausal Women: A Comparison of HR-pQCT and High-Field MR Imaging†

Galateia J. Kazakia; Benedict Hyun; Andrew J. Burghardt; Roland Krug; David C. Newitt; Anne E. de Papp; Thomas M. Link; Sharmila Majumdar

Bone structural measures obtained by two noninvasive imaging tools—3T MRI and HR‐pQCT—were compared. Significant but moderate correlations and 2‐ to 4‐fold discrepancies in parameter values were detected, suggesting that differences in acquisition and analysis must be considered when interpreting data from these imaging modalities.


Bone | 2012

Visual grading of motion induced image degradation in high resolution peripheral computed tomography: Impact of image quality on measures of bone density and micro-architecture

Jean-Baptiste Pialat; Andrew J. Burghardt; Miki Sode; Thomas M. Link; S. Majumdar

Motion artifacts are a common finding during high-resolution peripheral quantitative computed tomography (HR-pQCT) image acquisitions. To date it is not clear (i) when to repeat an acquisition, (ii) when to exclude a motion-degraded dataset post hoc, and (iii) how motion induced artifacts impact measures of trabecular and cortical parameters. In this study we present inter- and intra-observer reproducibility of a qualitative image quality grading score and report the prevalence of repeat acquisitions in our population. Finally the errors in bone density and micro-architectural parameters estimated from repeat acquisitions with and without motion degradation are presented. The relationship between these errors and the image quality grade is evaluated for each parameter. Repeat acquisitions performed due to operator-observed motion in the reconstructed image occurred for 22.7% of the exams (29.7% radius, 15.7% tibia). Of this subset, 88 exams with repeat acquisitions had at least one acquisition graded 1 (best quality). In this subset, the percent differences in bone density and micro-architecture measures tended to increase as the relative image quality decreased. Micro-architectural parameters were more sensitive to motion compared to geometric and densitometric parameters. These results provide estimates of the error in bone quality measures due to motion artifacts and provide an initial framework for developing standardized quality control criteria for cross-sectional and longitudinal HR-pQCT studies.

Collaboration


Dive into the Andrew J. Burghardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas M. Link

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Majumdar

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Krug

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janina M. Patsch

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge