Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Creese is active.

Publication


Featured researches published by Andrew J. Creese.


Journal of Proteome Research | 2012

Higher Energy Collision Dissociation (HCD) Product Ion-Triggered Electron Transfer Dissociation (ETD) Mass Spectrometry for the Analysis of N-Linked Glycoproteins

Charandeep Singh; Cleidiane G. Zampronio; Andrew J. Creese; Helen J. Cooper

Large scale mass spectrometry analysis of N-linked glycopeptides is complicated by the inherent complexity of the glycan structures. Here, we evaluate a mass spectrometry approach for the targeted analysis of N-linked glycopeptides in complex mixtures that does not require prior knowledge of the glycan structures or pre-enrichment of the glycopeptides. Despite the complexity of N-glycans, the core of the glycan remains constant, comprising two N-acetylglucosamine and three mannose units. Collision-induced dissociation (CID) mass spectrometry of N-glycopeptides results in the formation of the N-acetylglucosamine (GlcNAc) oxonium ion and a [mannose+GlcNAc] fragment (in addition to other fragments resulting from cleavage within the glycan). In ion-trap CID, those ions are not detected due to the low m/z cutoff; however, they are detected following the beam-type CID known as higher energy collision dissociation (HCD) on the orbitrap mass spectrometer. The presence of these product ions following HCD can be used as triggers for subsequent electron transfer dissociation (ETD) mass spectrometry analysis of the precursor ion. The ETD mass spectrum provides peptide sequence information, which is unobtainable from HCD. A Lys-C digest of ribonuclease B and trypsin digest of immunoglobulin G were separated by ZIC-HILIC liquid chromatography and analyzed by HCD product ion-triggered ETD. The data were analyzed both manually and by search against protein databases by commonly used algorithms. The results show that the product ion-triggered approach shows promise for the field of glycoproteomics and highlight the requirement for more sophisticated data mining tools.


Analytical Chemistry | 2011

Hemoglobin variant analysis via direct surface sampling of dried blood spots coupled with high-resolution mass spectrometry.

Rebecca L. Edwards; Andrew J. Creese; Mark Baumert; Paul D. Griffiths; Josephine Bunch; Helen J. Cooper

Hemoglobinopathies are the most common inherited disorders. Newborn blood screening for clinically significant hemoglobin variants, including sickle (HbS), HbC, and HbD, has been adopted in many countries as it is widely acknowledged that early detection improves the outcome. We present a method for determination of Hb variants by direct surface sampling of dried blood spots by use of an Advion Triversa Nanomate automated electrospray system coupled to a high-resolution mass spectrometer. The method involves no sample preparation. It is possible to unambiguously identify homozygous and heterozygous HbS, HbC, and HbD variants in <10 min without the need for additional confirmation. The method allows for repeated analysis of a single blood spot over a prolonged time period and is tolerant of blood spot storage conditions.


Arthritis & Rheumatism | 2015

Release of Active Peptidyl Arginine Deiminases by Neutrophils Can Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid

Julia Spengler; Božo Lugonja; A. Jimmy Ytterberg; Roman A. Zubarev; Andrew J. Creese; Mark J. Pearson; Melissa M. Grant; Michael R. Milward; Karin Lundberg; Christopher D. Buckley; Andrew Filer; Karim Raza; Paul R. Cooper; Iain L. C. Chapple; Dagmar Scheel-Toellner

In the majority of patients with rheumatoid arthritis (RA), antibodies specifically recognize citrullinated autoantigens that are generated by peptidylarginine deiminases (PADs). Neutrophils express high levels of PAD and accumulate in the synovial fluid (SF) of RA patients during disease flares. This study was undertaken to test the hypothesis that neutrophil cell death, induced by either NETosis (extrusion of genomic DNA–protein complexes known as neutrophil extracellular traps [NETs]) or necrosis, can contribute to production of autoantigens in the inflamed joint.


Analytical Chemistry | 2012

Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry.

Andrew J. Creese; Helen J. Cooper

The analysis of intact glycopeptides by mass spectrometry is challenging due to the numerous possibilities for isomerization, both within the attached glycan and the location of the modification on the peptide backbone. Here, we demonstrate that high field asymmetric wave ion mobility spectrometry (FAIMS), also known as differential ion mobility, is able to separate isomeric O-linked glycopeptides that have identical sequences but differing sites of glycosylation. Two glycopeptides from the glycoprotein mucin 5AC, GT(GalNAc)TPSPVPTTSTTSAP and GTTPSPVPTTST(GalNAc)TSAP (where GalNAc is O-linked N-acetylgalactosamine), were shown to coelute following reversed-phase liquid chromatography. However, FAIMS analysis of the glycopeptides revealed that the compensation voltage ranges in which the peptides were transmitted differed. Thus, it is possible at certain compensation voltages to completely separate the glycopeptides. Separation of the glycopeptides was confirmed by unique reporter ions produced by supplemental activation electron transfer dissociation mass spectrometry. These fragments also enable localization of the site of glycosylation. The results suggest that glycan position plays a key role in determining gas-phase glycopeptide structure and have implications for the application of FAIMS in glycoproteomics.


Arthritis & Rheumatism | 2015

Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in RA synovial fluid

Julia Spengler; Božo Lugonja; A. Jimmy Ytterberg; Roman A. Zubarev; Andrew J. Creese; Mark J. Pearson; Melissa M. Grant; Michael R. Milward; Karin Lundberg; Christopher D. Buckley; Andrew Filer; Karim Raza; Paul R. Cooper; Iain L. C. Chapple; Dagmar Scheel-Toellner

In the majority of patients with rheumatoid arthritis (RA), antibodies specifically recognize citrullinated autoantigens that are generated by peptidylarginine deiminases (PADs). Neutrophils express high levels of PAD and accumulate in the synovial fluid (SF) of RA patients during disease flares. This study was undertaken to test the hypothesis that neutrophil cell death, induced by either NETosis (extrusion of genomic DNA–protein complexes known as neutrophil extracellular traps [NETs]) or necrosis, can contribute to production of autoantigens in the inflamed joint.


Analytical Chemistry | 2010

Separation of Peptide Isomers with Variant Modified Sites by High-Resolution Differential Ion Mobility Spectrometry

Alexandre A. Shvartsburg; Andrew J. Creese; Richard D. Smith; Helen J. Cooper

Many proteins and proteolytic peptides incorporate the same post-translational modification (PTM) at different sites, creating multiple localization variants with different functions or activities that may coexist in cells. Current analytical methods based on liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS) are challenged by such isomers that often coelute in LC and/or produce nonunique fragment ions. The application of ion mobility spectrometry (IMS) was explored, but success has been limited by insufficient resolution. We show that high-resolution differential ion mobility spectrometry (FAIMS) employing helium-rich gases can readily separate phosphopeptides with variant modification sites. Use of He/N(2) mixtures containing up to 74% He has allowed separating to >95% three monophosphorylated peptides of identical sequence. Similar separation was achieved at 50% He, using an elevated electric field. Bisphosphorylated isomers that differ in only one modification site were separated to the same extent. We anticipate FAIMS capabilities for such separations to extend to other PTMs.


Rapid Communications in Mass Spectrometry | 2009

High-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled with high-resolution electron transfer dissociation mass spectrometry for the analysis of isobaric phosphopeptides

Yue Xuan; Andrew J. Creese; Julie Horner; Helen J. Cooper

We have applied high-field asymmetric waveform ion mobility spectrometry (FAIMS) to the analysis of the phosphopeptides APLpSFRGSLPKSYVK, APLSFRGpSLPKSYVK, and APLSFRGSLPKpSYVK. The peptides have identical amino acid sequences and differ only in the site of phosphorylation. The results show that FAIMS is capable of at least partially separating these species. Separation was confirmed by coupling FAIMS with high-resolution electron transfer dissociation (ETD) mass spectrometry. Phosphorylation is retained on the ETD peptide fragments thereby allowing assignment of the site of the modification. Co-eluting phosphopeptides which differ only in the site of modification are frequently observed in liquid chromatography/tandem mass spectrometry phosphoproteomics experiments, and therefore these proof-of-principle results have implications for the application of FAIMS in that field.


Journal of Proteome Research | 2010

Proteomic analysis of a noninvasive human model of acute inflammation and its resolution: the twenty-one day gingivitis model

Melissa M. Grant; Andrew J. Creese; Gordon Barr; Martin R. Ling; Ann E. Scott; John B. Matthews; Helen R. Griffiths; Helen J. Cooper; Iain L. C. Chapple

The 21-day experimental gingivitis model, an established noninvasive model of inflammation in response to increasing bacterial accumulation in humans, is designed to enable the study of both the induction and resolution of inflammation. Here, we have analyzed gingival crevicular fluid, an oral fluid comprising a serum transudate and tissue exudates, by LC−MS/MS using Fourier transform ion cyclotron resonance mass spectrometry and iTRAQ isobaric mass tags, to establish meta-proteomic profiles of inflammation-induced changes in proteins in healthy young volunteers. Across the course of experimentally induced gingivitis, we identified 16 bacterial and 186 human proteins. Although abundances of the bacterial proteins identified did not vary temporally, Fusobacterium outer membrane proteins were detected. Fusobacterium species have previously been associated with periodontal health or disease. The human proteins identified spanned a wide range of compartments (both extracellular and intracellular) and functions, including serum proteins, proteins displaying antibacterial properties, and proteins with functions associated with cellular transcription, DNA binding, the cytoskeleton, cell adhesion, and cilia. PolySNAP3 clustering software was used in a multilayered analytical approach. Clusters of proteins that associated with changes to the clinical parameters included neuronal and synapse associated proteins.


Journal of the American Society for Mass Spectrometry | 2008

The effect of phosphorylation on the electron capture dissociation of peptide ions

Andrew J. Creese; Helen J. Cooper

The effect of site and frequency of phosphorylation on the electron capture dissociation of peptide ions has been investigated. The ECD of a suite of synthetic peptides (APLSFRGSLPKSYVK; one unmodified, three singly-phosphorylated, three-doubly phosphorylated, and one triply-phosphorylated); two tryptic phosphopeptides (YKVPQLEIVPNpSAEER, α-casein and FQpSEEQQQTEDELQDK, β-casein) and their unmodified counterparts, were determined over a range of ECD cathode potentials. The results show that, for doubly-charged precursor ions, the presence of phosphorylation has a deleterious effect on ECD sequence coverage. The fragmentation patterns observed suggest that for peptides with multiple basic residues, the phospho-groups exist in their deprotonated form and form salt-bridges with protonated amino acid side chains. The fragmentation observed for the acidic tryptic peptides suggested the presence of noncovalent interactions, which were perturbed on phosphorylation. Increasing the ECD electron energy significantly improves sequence coverage. Alternatively, improved sequence coverage can be achieved by performing ECD on triply-charged precursor ions. The findings are important for the understanding of gas-phase fragmentation of phosphopeptides.


Analytical Chemistry | 2011

Separation of a Set of Peptide Sequence Isomers Using Differential Ion Mobility Spectrometry

Alexandre A. Shvartsburg; Andrew J. Creese; Richard D. Smith; Helen J. Cooper

Protein identification in bottom-up proteomics requires disentangling isomers of proteolytic peptides, a major class of which are sequence inversions. Their separation using ion mobility spectrometry (IMS) has been limited to isomeric pairs. Here we demonstrate baseline separation of all seven 8-mer tryptic peptide isomers using differential IMS. Evaluation of peak capacity implies that even larger libraries should be resolved for heavier peptides with higher charge states.

Collaboration


Dive into the Andrew J. Creese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John K. Heath

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Filer

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge