Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen J. Cooper is active.

Publication


Featured researches published by Helen J. Cooper.


Journal of the American Society for Mass Spectrometry | 2002

Characterization of amino acid side chain losses in electron capture dissociation

Helen J. Cooper; Robert R. Hudgins; Kristina Håkansson; Alan G. Marshall

We have used electrospray ionization (ESI) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry to characterize amino acid side chain losses observed during electron capture dissociation (ECD) of ten 7- to 14-mer peptides. Side-chain cleavages were observed for arginine, histidine, asparagine or glutamine, methionine, and lysine residues. All peptides containing an arginine, histidine, asparagine or glutamine showed the losses associated with that residue. Methionine side-chain loss was observed for doubly-protonated bombesin. Lysine side-chain loss was observed for triply-protonated dynorphin A fragment 1–13 but not for the doubly-protonated ion. The proximity of arginine to a methoxy C-terminal group significantly enhances the extent of side-chain fragmentation. Fragment ions associated with side-chain losses were comparable in abundance to those resulting from backbone cleavage in all cases. In the ECD spectrum of one peptide, the major product was due to fragmentation within an arginine side chain. Our results suggest that cleavages within side chains should be taken into account in analysis of ECD mass spectral data. Losses from arginine, histidine, and asparigine/glutamine can be used to ascertain their presence, as in the analysis of unknown peptides, particularly those with non-linear structures.


Journal of Biological Chemistry | 2005

Determination of Aberrant O-Glycosylation in the IgA1 Hinge Region by Electron Capture Dissociation Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry

Matthew B. Renfrow; Helen J. Cooper; Milan Tomana; Rose Kulhavy; Yoshiyuki Hiki; Kazunori Toma; Mark R. Emmett; Jiri Mestecky; Alan G. Marshall; Jan Novak

In a number of human diseases of chronic inflammatory or autoimmune character, immunoglobulin molecules display aberrant glycosylation patterns of N- or O-linked glycans. In IgA nephropathy, IgA1 molecules with incompletely galactosylated O-linked glycans in the hinge region (HR) are present in mesangial immunodeposits and in circulating immune complexes. It is not known whether the Gal deficiency in IgA1 proteins occurs randomly or preferentially at specific sites. To develop experimental approaches to address this question, the synthetic IgA1 hinge region and hinge region from a naturally Gal-deficient IgA1 myeloma protein have been analyzed by 9.4 tesla Fourier transform-ion cyclotron resonance mass spectrometry. Fourier transform-ion cyclotron resonance mass spectrometry offers two complementary fragmentation techniques for analysis of protein glycosylation by tandem mass spectrometry. Infrared multiphoton dissociation of isolated myeloma IgA1 hinge region peptides confirms the amino acid sequence of the de-glycosylated peptide and positively identifies a series of fragments differing in O-glycosylation. To localize sites of O-glycan attachment, synthetic IgA1 HR glycopeptides and HR from a naturally Gal-deficient polymeric IgA1 myeloma protein were analyzed by electron capture dissociation and activated ion-electron capture dissociation. Multiple sites of O-glycan attachment (including sites of Gal deficiency) in myeloma IgA1 HR glycoforms were identified (in all but one case uniquely). These results represent the first direct identification of multiple sites of O-glycan attachment in IgA1 hinge region by mass spectrometry, thereby enabling future characterization at the molecular level of aberrant glycosylation of IgA1 in diseases such as IgA nephropathy.


Journal of Proteome Research | 2012

Higher Energy Collision Dissociation (HCD) Product Ion-Triggered Electron Transfer Dissociation (ETD) Mass Spectrometry for the Analysis of N-Linked Glycoproteins

Charandeep Singh; Cleidiane G. Zampronio; Andrew J. Creese; Helen J. Cooper

Large scale mass spectrometry analysis of N-linked glycopeptides is complicated by the inherent complexity of the glycan structures. Here, we evaluate a mass spectrometry approach for the targeted analysis of N-linked glycopeptides in complex mixtures that does not require prior knowledge of the glycan structures or pre-enrichment of the glycopeptides. Despite the complexity of N-glycans, the core of the glycan remains constant, comprising two N-acetylglucosamine and three mannose units. Collision-induced dissociation (CID) mass spectrometry of N-glycopeptides results in the formation of the N-acetylglucosamine (GlcNAc) oxonium ion and a [mannose+GlcNAc] fragment (in addition to other fragments resulting from cleavage within the glycan). In ion-trap CID, those ions are not detected due to the low m/z cutoff; however, they are detected following the beam-type CID known as higher energy collision dissociation (HCD) on the orbitrap mass spectrometer. The presence of these product ions following HCD can be used as triggers for subsequent electron transfer dissociation (ETD) mass spectrometry analysis of the precursor ion. The ETD mass spectrum provides peptide sequence information, which is unobtainable from HCD. A Lys-C digest of ribonuclease B and trypsin digest of immunoglobulin G were separated by ZIC-HILIC liquid chromatography and analyzed by HCD product ion-triggered ETD. The data were analyzed both manually and by search against protein databases by commonly used algorithms. The results show that the product ion-triggered approach shows promise for the field of glycoproteomics and highlight the requirement for more sophisticated data mining tools.


Analytical Chemistry | 2011

Hemoglobin variant analysis via direct surface sampling of dried blood spots coupled with high-resolution mass spectrometry.

Rebecca L. Edwards; Andrew J. Creese; Mark Baumert; Paul D. Griffiths; Josephine Bunch; Helen J. Cooper

Hemoglobinopathies are the most common inherited disorders. Newborn blood screening for clinically significant hemoglobin variants, including sickle (HbS), HbC, and HbD, has been adopted in many countries as it is widely acknowledged that early detection improves the outcome. We present a method for determination of Hb variants by direct surface sampling of dried blood spots by use of an Advion Triversa Nanomate automated electrospray system coupled to a high-resolution mass spectrometer. The method involves no sample preparation. It is possible to unambiguously identify homozygous and heterozygous HbS, HbC, and HbD variants in <10 min without the need for additional confirmation. The method allows for repeated analysis of a single blood spot over a prolonged time period and is tolerant of blood spot storage conditions.


Journal of Proteome Research | 2009

SLoMo: Automated Site Localization of Modifications from ETD/ECD Mass Spectra

Christopher M. Bailey; Steve M. M. Sweet; Debbie L. Cunningham; Martin Zeller; John K. Heath; Helen J. Cooper

Recently, software has become available to automate localization of phosphorylation sites from CID data and to assign associated confidence scores. We present an algorithm, SLoMo (Site Localization of Modifications), which extends this capability to ETD/ECD mass spectra. Furthermore, SLoMo caters for both high and low resolution data and allows for site-localization of any UniMod post-translational modification. SLoMo accepts input data from a variety of formats (e.g., Sequest, OMSSA). We validate SLoMo with high and low resolution ETD, ECD, and CID data.


Molecular & Cellular Proteomics | 2009

Large Scale Localization of Protein Phosphorylation by Use of Electron Capture Dissociation Mass Spectrometry

Steve M. M. Sweet; Christopher M. Bailey; Debbie L. Cunningham; John K. Heath; Helen J. Cooper

We used on-line electron capture dissociation (ECD) for the large scale identification and localization of sites of phosphorylation. Each FT-ICR ECD event was paired with a linear ion trap collision-induced dissociation (CID) event, allowing a direct comparison of the relative merits of ECD and CID for phosphopeptide identification and site localization. Linear ion trap CID was shown to be most efficient for phosphopeptide identification, whereas FT-ICR ECD was superior for localization of sites of phosphorylation. The combination of confident CID and ECD identification and confident CID and ECD localization is particularly valuable in cases where a phosphopeptide is identified just once within a phosphoproteomics experiment.


International Journal of Mass Spectrometry | 2003

Secondary fragmentation of linear peptides in electron capture dissociation

Helen J. Cooper; Robert R. Hudgins; Kristina Håkansson; Alan G. Marshall

Abstract Inspection of the electron capture dissociation (ECD) spectra of doubly-protonated peptides, Leu4-Sar-Leu3-Lys-OH, Leu4-Ala-Leu3-Lys-OH, Gly4-Sar-Gly3-Lys-NH2 and Gly3-Pro-Sar-Gly3-Lys-NH2, reveals extensive secondary fragmentation. In addition to w ions, entire, and in some cases multiple, cleavages of amino acid side chains from backbone fragments are observed. Extensive water loss from backbone fragments is observed for the glycine-rich peptides. For Leu4-Ala-Leu3-Lys, the preferred fragmentation channel is cleavage of the amide bond to produce b7 and b8 ions. ECD of Gly3-Pro-Sar-Gly3-Lys-NH2 results in amine bond (c/z) cleavage in the proline residue accompanied by CC (or secondary NC) cleavage in the proline side chain. That fragmentation channel has not been observed previously. The peptides were also subjected to “hot” electron capture dissociation (HECD) and the resulting spectra differed markedly from those obtained under standard ECD conditions. In contrast to HECD, secondary fragmentation observed under standard ECD conditions cannot be attributed to excess energy arising from the kinetic energy of the electrons prior to capture. The results suggest that the fragmentation channels available following electron capture depend somewhat on the individual peptide structure and have mechanistic implications.


Analytical Chemistry | 2012

Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry.

Andrew J. Creese; Helen J. Cooper

The analysis of intact glycopeptides by mass spectrometry is challenging due to the numerous possibilities for isomerization, both within the attached glycan and the location of the modification on the peptide backbone. Here, we demonstrate that high field asymmetric wave ion mobility spectrometry (FAIMS), also known as differential ion mobility, is able to separate isomeric O-linked glycopeptides that have identical sequences but differing sites of glycosylation. Two glycopeptides from the glycoprotein mucin 5AC, GT(GalNAc)TPSPVPTTSTTSAP and GTTPSPVPTTST(GalNAc)TSAP (where GalNAc is O-linked N-acetylgalactosamine), were shown to coelute following reversed-phase liquid chromatography. However, FAIMS analysis of the glycopeptides revealed that the compensation voltage ranges in which the peptides were transmitted differed. Thus, it is possible at certain compensation voltages to completely separate the glycopeptides. Separation of the glycopeptides was confirmed by unique reporter ions produced by supplemental activation electron transfer dissociation mass spectrometry. These fragments also enable localization of the site of glycosylation. The results suggest that glycan position plays a key role in determining gas-phase glycopeptide structure and have implications for the application of FAIMS in glycoproteomics.


Analytical Chemistry | 2010

Separation of Peptide Isomers with Variant Modified Sites by High-Resolution Differential Ion Mobility Spectrometry

Alexandre A. Shvartsburg; Andrew J. Creese; Richard D. Smith; Helen J. Cooper

Many proteins and proteolytic peptides incorporate the same post-translational modification (PTM) at different sites, creating multiple localization variants with different functions or activities that may coexist in cells. Current analytical methods based on liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS) are challenged by such isomers that often coelute in LC and/or produce nonunique fragment ions. The application of ion mobility spectrometry (IMS) was explored, but success has been limited by insufficient resolution. We show that high-resolution differential ion mobility spectrometry (FAIMS) employing helium-rich gases can readily separate phosphopeptides with variant modification sites. Use of He/N(2) mixtures containing up to 74% He has allowed separating to >95% three monophosphorylated peptides of identical sequence. Similar separation was achieved at 50% He, using an elevated electric field. Bisphosphorylated isomers that differ in only one modification site were separated to the same extent. We anticipate FAIMS capabilities for such separations to extend to other PTMs.


Rapid Communications in Mass Spectrometry | 2009

High-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled with high-resolution electron transfer dissociation mass spectrometry for the analysis of isobaric phosphopeptides

Yue Xuan; Andrew J. Creese; Julie Horner; Helen J. Cooper

We have applied high-field asymmetric waveform ion mobility spectrometry (FAIMS) to the analysis of the phosphopeptides APLpSFRGSLPKSYVK, APLSFRGpSLPKSYVK, and APLSFRGSLPKpSYVK. The peptides have identical amino acid sequences and differ only in the site of phosphorylation. The results show that FAIMS is capable of at least partially separating these species. Separation was confirmed by coupling FAIMS with high-resolution electron transfer dissociation (ETD) mass spectrometry. Phosphorylation is retained on the ETD peptide fragments thereby allowing assignment of the site of the modification. Co-eluting phosphopeptides which differ only in the site of modification are frequently observed in liquid chromatography/tandem mass spectrometry phosphoproteomics experiments, and therefore these proof-of-principle results have implications for the application of FAIMS in that field.

Collaboration


Dive into the Helen J. Cooper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John K. Heath

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge