Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Ferguson is active.

Publication


Featured researches published by Andrew J. Ferguson.


Applied Physics Letters | 2008

Performance of Bulk Heterojunction Photovoltaic Devices Prepared by Airbrush Spray Deposition

R. Green; Anthony J. Morfa; Andrew J. Ferguson; Nikos Kopidakis; Garry Rumbles; Sean E. Shaheen

We have used airbrush spray deposition to fabricate organic photovoltaic devices with an active layer composed of a blend of poly(3-hexylthiophene) and [6,6]-phenyl-C61 butyric acid methyl ester. Working devices were prepared in ambient conditions from a variety of common organic solvents; active layers prepared from chlorobenzene exhibit improved homogeneity, resulting in narrower distributions of the relevant device parameters. Further studies on devices prepared from chlorobenzene showed that annealing at 120°C for 10min resulted in optimum performance, and that an active layer thickness of 150nm resulted in a maximum efficiency of 2.35% under AM1.5 illumination at 1sun.


ACS Nano | 2010

Photovoltaic Charge Generation in Organic Semiconductors Based on Long-Range Energy Transfer

David C. Coffey; Andrew J. Ferguson; Nikos Kopidakis; Garry Rumbles

For efficient charge generation in organic solar cells, photogenerated excitons must migrate to a donor/acceptor interface where they can be dissociated. This migration is traditionally presumed to be based on diffusion through the absorber material. Herein we study an alternative migration route--two-step exciton dissociation--whereby the exciton jumps from the donor to acceptor before charge creation takes place. We study this process in a series of multilayer donor/barrier/acceptor samples, where either poly(3-hexylthiophene) (P3HT) or copper phthalocyanine (CuPc) is the donor, fullerene (C60) is the acceptor, and N,N-diphenyl-N,N-bis(3-methylphenyl)-[1,1-bisphenyl]-4,4-diamine (TPD) acts as a barrier to energy transfer. By varying the thickness of the barrier layer, we find that energy transfer from P3HT to C60 proceeds over large distances (∼50% probability of transfer across a 11 nm barrier), and that this process is consistent with long-range Förster resonance energy transfer (FRET). Finally, we demonstrate a fundamentally different architecture concept that utilizes the two-step mechanism to enhance performance in a series of P3HT/CuPc/C60 devices.


ACS Nano | 2011

Photoinduced Carrier Generation and Decay Dynamics in Intercalated and Non-intercalated Polymer:Fullerene Bulk Heterojunctions

W.L. Rance; Andrew J. Ferguson; Thomas McCarthy-Ward; Martin Heeney; David S. Ginley; Dana C. Olson; Garry Rumbles; Nikos Kopidakis

The dependence of photoinduced carrier generation and decay on donor-acceptor nanomorphology is reported as a function of composition for blends of the polymer poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT-C(14)) with two electron-accepting fullerenes: phenyl-C(71)-butyric acid methyl ester (PC(71)BM) or the bisadduct of phenyl-C(61)-butyric acid methyl ester (bis-PC(61)BM). The formation of partially or fully intercalated bimolecular crystals at weight ratios up to 1:1 for pBTTT-C(14):PC(71)BM blends leads to efficient exciton quenching due to a combination of static and dynamic mechanisms. At higher fullerene loadings, pure PC(71)BM domains are formed that result in an enhanced free carrier lifetime, as a consequence of spatial separation of the electron and hole into different phases, and the dominant contribution to the photoconductance comes from the high-frequency electron mobility in the fullerene clusters. In the pBTTT-C(14):bis-PC(61)BM system, phase separation results in a non-intercalated structure, independent of composition, which is characterized by exciton quenching that is dominated by a dynamic process, an enhanced carrier lifetime and a hole-dominated photoconductance signal. The results indicate that intercalation of fullerene into crystalline polymer domains is not detrimental to the density of long-lived carriers, suggesting that efficient organic photovoltaic devices could be fabricated that incorporate intercalated structures, provided that an additional pure fullerene phase is present for charge extraction.


Energy and Environmental Science | 2016

Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes

Rachelle Ihly; Anne-Marie Dowgiallo; Mengjin Yang; Philip Schulz; Noah J. Stanton; Obadiah G. Reid; Andrew J. Ferguson; Kai Zhu; Joseph J. Berry; Jeffrey L. Blackburn

Metal-halide based perovskite solar cells have rapidly emerged as a promising alternative to traditional inorganic and thin-film photovoltaics. Although charge transport layers are used on either side of perovskite absorber layers to extract photogenerated electrons and holes, the time scales for charge extraction and recombination are poorly understood. Ideal charge transport layers should facilitate large discrepancies between charge extraction and recombination rates. Here, we demonstrate that highly enriched semiconducting single-walled carbon nanotube (SWCNT) films enable rapid (sub-picosecond) hole extraction from a prototypical perovskite absorber layer and extremely slow back-transfer and recombination (hundreds of microseconds). The energetically narrow and distinct spectroscopic signatures for charges within these SWCNT thin films enables the unambiguous temporal tracking of each charge carrier with time-resolved spectroscopies covering many decades of time. The efficient hole extraction by the SWCNT layer also improves electron extraction by the compact titanium dioxide electron transport layer, which should reduce charge accumulation at each critical interface. Finally, we demonstrate that the use of thin interface layers of semiconducting single-walled carbon nanotubes between the perovskite absorber layer and a prototypical hole transport layer improves device efficiency and stability, and reduces hysteresis.


Materials horizons | 2014

Additive-assisted supramolecular manipulation of polymer:fullerene blend phase morphologies and its influence on photophysical processes

Ester Buchaca-Domingo; Andrew J. Ferguson; Fiona C. Jamieson; Thomas McCarthy-Ward; Safa Shoaee; John R. Tumbleston; Obadiah G. Reid; Liyang Yu; M.-B. Madec; M. Pfannmöller; F. Hermerschmidt; R. R. Schröder; Scott E. Watkins; Nikos Kopidakis; Giuseppe Portale; Aram Amassian; Martin Heeney; Harald Ade; Garry Rumbles; James R. Durrant; Natalie Stingelin

It is well known that even small variations in the solid-state microstructure of polymer:fullerene bulk heterojunctions can drastically change their organic solar cell device performance. We employ pBTTT:PC61BM as a model system and manipulate co-crystal formation of 1 : 1 (by weight) blends with the assistance of fatty acid methyl esters as additives. This allows us to evaluate the role of the intermixed phase in such binary blends through manipulation of their phase morphology—from fully intercalated to partially and predominantly non-intercalated systems—and its effect on the exciton- and carrier- dynamics and the efficiency of charge collection, with relevance for future device design and manufacturing.


Journal of Materials Chemistry | 2009

Low-bandgap thiophene dendrimers for improved light harvesting

Benjamin L. Rupert; William Mitchell; Andrew J. Ferguson; Muhammet Kose; W.L. Rance; Garry Rumbles; David S. Ginley; Sean E. Shaheen; Nikos Kopidakis

This article follows our previous work on the synthesis and characterization of pi-conjugated dendrimers for use in organic solar cells. Here we discuss five new thiophene-based dendrimers that were synthesized in order to study the relationship between their chemical structures and electronic properties. Three of these dendrimers incorporate acetylene spacers, included to relieve steric strain, between the thiophene arms and phenyl cores used in previous studies. Only a small effect on the electronic properties is observed upon inclusion of the acetylene spacer in the three-arm dendrimer, 3G1-2S-Ac. In contrast, a decrease in the bandgap is observed for the four-arm dendrimer, 4G1-2S-Ac, due to a reduction of interactions between the arms in the more sterically congested 1,2,4,5-arrangement around the phenyl core, resulting in delocalization of the exciton through the phenyl core. Incorporation of electron-withdrawing cyano groups on the phenyl core of the three-arm dendrimer, 3G1-2S-CN, resulted in a very large (∼0.5 eV) decrease in the bandgap, due to stabilization of the lowest unoccupied molecular orbital, and the low energy absorption band in this material is attributed to a transition with significant intramolecular charge-transfer character. The electronic properties of three- and four-arm dendrimers with electron-donating dibutylaniline moieties attached to the end of the thiophene dendron, 3G1-2S-N and 4G1-2S-N respectively, are almost identical, indicating that they are dominated by the arms, with no through-core communication allowed, even for the para-linked arms of 4G1-2S-N. However, there is a significant increase in the molar absorptivity of these materials, concomitant with significant broadening of the absorption spectrum, which is an important attribute in light-harvesting applications.


Nature Chemistry | 2016

Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions

Rachelle Ihly; Kevin S. Mistry; Andrew J. Ferguson; Tyler T. Clikeman; Bryon W. Larson; Obadiah G. Reid; Olga V. Boltalina; Steven H. Strauss; Garry Rumbles; Jeffrey L. Blackburn

Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the first time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.


ChemPhysChem | 2014

Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

Alexandre M. Nardes; Andrew J. Ferguson; Pascal Wolfer; Kurt Gui; Paul L. Burn; Paul Meredith; Nikos Kopidakis

A comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device is presented. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85% of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. We propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub-percolating volume fraction of the planar acceptor. Furthermore, the planar K12 co-assembles with P3HT into a disordered, glassy phase that partly accounts for the poor electron-transport properties, and may also enhance recombination due to the strong intermolecular interactions between the donor and the acceptor. The implication for the performance of organic photovoltaic devices with the two acceptors is also discussed.


Energy and Environmental Science | 2017

Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films

Bradley A. MacLeod; Noah J. Stanton; Isaac E. Gould; Devin Wesenberg; Rachelle Ihly; Zbyslaw R. Owczarczyk; Christopher S. Fewox; Christopher N. Folmar; Katherine Holman Hughes; Barry L. Zink; Jeffrey L. Blackburn; Andrew J. Ferguson

Lightweight, robust, and flexible single-walled carbon nanotube (SWCNT) materials can be processed inexpensively using solution-based techniques, similar to other organic semiconductors. In contrast to many semiconducting polymers, semiconducting SWCNTs (s-SWCNTs) represent unique one-dimensional organic semiconductors with chemical and physical properties that facilitate equivalent transport of electrons and holes. These factors have driven increasing attention to employing s-SWCNTs for electronic and energy harvesting applications, including thermoelectric (TE) generators. Here we demonstrate a combination of ink chemistry, solid-state polymer removal, and charge-transfer doping strategies that enable unprecedented n-type and p-type TE power factors, in the range of 700 μW m−1 K−2 at 298 K for the same solution-processed highly enriched thin films containing 100% s-SWCNTs. We also demonstrate that the thermal conductivity appears to decrease with decreasing s-SWCNT diameter, leading to a peak material zT ≈ 0.12 for s-SWCNTs with diameters in the range of 1.0 nm. Our results indicate that the TE performance of s-SWCNT-only material systems is approaching that of traditional inorganic semiconductors, paving the way for these materials to be used as the primary components for efficient, all-organic TE generators.


Journal of Physical Chemistry B | 2014

Quenching of the Perylene Fluorophore by Stable Nitroxide Radical-Containing Macromolecules

Barbara K. Hughes; Wade A. Braunecker; Andrew J. Ferguson; Travis W. Kemper; Ross E. Larsen; Thomas Gennett

Stable nitroxide radical bearing organic polymer materials are attracting much attention for their application as next generation energy storage materials. A greater understanding of the inherent charge transfer mechanisms in such systems will ultimately be paramount to further advancements in the understanding of both intrafilm and interfacial ion- and electron-transfer reactions. This work is focused on advancing the fundamental understanding of these dynamic charge transfer properties by exploiting the fact that these species are efficient fluorescence quenchers. We systematically incorporated fluorescent perylene dyes into solutions containing the 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radical and controlled their interaction by binding the TEMPO moiety into macromolecules with varying morphologies (e.g., chain length, density of radical pendant groups). In the case of the model compound, 4-oxo-TEMPO, quenching of the perylene excited state was found to be dominated by a dynamic (collisional) process, with a contribution from an apparent static process that is described by an ∼2 nm quenching sphere of action. When we incorporated the TEMPO unit into a macromolecule, the quenching behavior was altered significantly. The results can be described by using two models: (A) a collisional quenching process that becomes less efficient, presumably due to a reduction in the diffusion constant of the quenching entity, with a quenching sphere of action similar to 4-oxo-TEMPO or (B) a collisional quenching process that becomes more efficient as the radius of interaction grows larger with increasing oligomer length. This is the first study that definitively illustrates that fluorophore quenching by a polymer system cannot be explained using merely a classical Stern-Volmer approach but rather necessitates a more complex model.

Collaboration


Dive into the Andrew J. Ferguson's collaboration.

Top Co-Authors

Avatar

Jeffrey L. Blackburn

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nikos Kopidakis

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Garry Rumbles

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rachelle Ihly

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kevin S. Mistry

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Obadiah G. Reid

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wade A. Braunecker

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bryon W. Larson

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Noah J. Stanton

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sean E. Shaheen

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge