Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachelle Ihly is active.

Publication


Featured researches published by Rachelle Ihly.


Nano Letters | 2010

Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids

Yao Liu; Markelle Gibbs; James Puthussery; Rachelle Ihly; Hugh W. Hillhouse; Matt Law

We measure the room-temperature electron and hole field-effect mobilities (micro(FE)) of a series of alkanedithiol-treated PbSe nanocrystal (NC) films as a function of NC size and the length of the alkane chain. We find that carrier mobilities decrease exponentially with increasing ligand length according to the scaling parameter beta = 1.08-1.10 A(-1), as expected for hopping transport in granular conductors with alkane tunnel barriers. An electronic coupling energy as large as 8 meV is calculated from the mobility data. Mobilities increase by 1-2 orders of magnitude with increasing NC diameter (up to 0.07 and 0.03 cm(2) V(-1) s(-1) for electrons and holes, respectively); the electron mobility peaks at a NC size of approximately 6 nm and then decreases for larger NCs, whereas the hole mobility shows a monotonic increase. The size-mobility trends seem to be driven primarily by the smaller number of hops required for transport through arrays of larger NCs but may also reflect a systematic decrease in the depth of trap states with decreasing NC band gap. We find that carrier mobility is independent of the polydispersity of the NC samples, which can be understood if percolation networks of the larger-diameter, smaller-band-gap NCs carry most of the current in these NC solids. Our results establish a baseline for mobility trends in PbSe NC solids, with implications for fabricating high-mobility NC-based optoelectronic devices.


Nano Letters | 2013

PbSe Quantum Dot Field-Effect Transistors with Air-Stable Electron Mobilities above 7 cm2 V–1 s–1

Yao Liu; Jason Tolentino; Markelle Gibbs; Rachelle Ihly; Craig L. Perkins; Yu Liu; Nathan Crawford; John C. Hemminger; Matt Law

PbSe quantum dot (QD) field effect transistors (FETs) with air-stable electron mobilities above 7 cm(2) V(-1) s(-1) are made by infilling sulfide-capped QD films with amorphous alumina using low-temperature atomic layer deposition (ALD). This high mobility is achieved by combining strong electronic coupling (from the ultrasmall sulfide ligands) with passivation of surface states by the ALD coating. A series of control experiments rule out alternative explanations. Partial infilling tunes the electrical characteristics of the FETs.


ACS Nano | 2011

The Photothermal Stability of PbS Quantum Dot Solids

Rachelle Ihly; Jason Tolentino; Yao Liu; Markelle Gibbs; Matt Law

We combine optical absorption spectroscopy, ex situ transmission electron microscopy (TEM) imaging, and variable-temperature measurements to study the effect of ultraviolet (UV) light and heat treatments on ethanedithiol-treated PbS quantum dot (QD) films as a function of ambient atmosphere, temperature, and QD size. Film aging occurs mainly by oxidation or ripening and sintering depending on QD size and the presence of oxygen. We can stop QD oxidation and greatly suppress ripening by infilling the films with amorphous Al(2)O(3) using room-temperature atomic layer deposition (ALD).


Energy and Environmental Science | 2016

Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes

Rachelle Ihly; Anne-Marie Dowgiallo; Mengjin Yang; Philip Schulz; Noah J. Stanton; Obadiah G. Reid; Andrew J. Ferguson; Kai Zhu; Joseph J. Berry; Jeffrey L. Blackburn

Metal-halide based perovskite solar cells have rapidly emerged as a promising alternative to traditional inorganic and thin-film photovoltaics. Although charge transport layers are used on either side of perovskite absorber layers to extract photogenerated electrons and holes, the time scales for charge extraction and recombination are poorly understood. Ideal charge transport layers should facilitate large discrepancies between charge extraction and recombination rates. Here, we demonstrate that highly enriched semiconducting single-walled carbon nanotube (SWCNT) films enable rapid (sub-picosecond) hole extraction from a prototypical perovskite absorber layer and extremely slow back-transfer and recombination (hundreds of microseconds). The energetically narrow and distinct spectroscopic signatures for charges within these SWCNT thin films enables the unambiguous temporal tracking of each charge carrier with time-resolved spectroscopies covering many decades of time. The efficient hole extraction by the SWCNT layer also improves electron extraction by the compact titanium dioxide electron transport layer, which should reduce charge accumulation at each critical interface. Finally, we demonstrate that the use of thin interface layers of semiconducting single-walled carbon nanotubes between the perovskite absorber layer and a prototypical hole transport layer improves device efficiency and stability, and reduces hysteresis.


ACS Nano | 2015

Isolation of >1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction

Jeffrey A. Fagan; Erik Haroz; Rachelle Ihly; Hui Gui; Jeffrey L. Blackburn; Jeffrey R. Simpson; Stephanie Lam; Angela R. Hight Walker; Stephen K. Doorn; Ming Zheng

In this contribution we demonstrate the effective separation of single-wall carbon nanotube (SWCNT) species with diameters larger than 1 nm through multistage aqueous two-phase extraction (ATPE), including isolation at the near-monochiral species level up to at least the diameter range of SWCNTs synthesized by electric arc synthesis (1.3-1.6 nm). We also demonstrate that refined species are readily obtained from both the metallic and semiconducting subpopulations of SWCNTs and that this methodology is effective for multiple SWCNT raw materials. Using these data, we report an empirical function for the necessary surfactant concentrations in the ATPE method for separating different SWCNTs into either the lower or upper phase as a function of SWCNT diameter. This empirical correlation enables predictive separation design and identifies a subset of SWCNTs that behave unusually as compared to other species. These results not only dramatically increase the range of SWCNT diameters to which species selective separation can be achieved but also demonstrate that aqueous two-phase separations can be designed across experimentally accessible ranges of surfactant concentrations to controllably separate SWCNT populations of very small (∼0.62 nm) to very large diameters (>1.7 nm). Together, the results reported here indicate that total separation of all SWCNT species is likely feasible by the ATPE method, especially given future development of multistage automated extraction techniques.


Nature Chemistry | 2016

Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions

Rachelle Ihly; Kevin S. Mistry; Andrew J. Ferguson; Tyler T. Clikeman; Bryon W. Larson; Obadiah G. Reid; Olga V. Boltalina; Steven H. Strauss; Garry Rumbles; Jeffrey L. Blackburn

Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the first time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.


Energy and Environmental Science | 2017

Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films

Bradley A. MacLeod; Noah J. Stanton; Isaac E. Gould; Devin Wesenberg; Rachelle Ihly; Zbyslaw R. Owczarczyk; Christopher S. Fewox; Christopher N. Folmar; Katherine Holman Hughes; Barry L. Zink; Jeffrey L. Blackburn; Andrew J. Ferguson

Lightweight, robust, and flexible single-walled carbon nanotube (SWCNT) materials can be processed inexpensively using solution-based techniques, similar to other organic semiconductors. In contrast to many semiconducting polymers, semiconducting SWCNTs (s-SWCNTs) represent unique one-dimensional organic semiconductors with chemical and physical properties that facilitate equivalent transport of electrons and holes. These factors have driven increasing attention to employing s-SWCNTs for electronic and energy harvesting applications, including thermoelectric (TE) generators. Here we demonstrate a combination of ink chemistry, solid-state polymer removal, and charge-transfer doping strategies that enable unprecedented n-type and p-type TE power factors, in the range of 700 μW m−1 K−2 at 298 K for the same solution-processed highly enriched thin films containing 100% s-SWCNTs. We also demonstrate that the thermal conductivity appears to decrease with decreasing s-SWCNT diameter, leading to a peak material zT ≈ 0.12 for s-SWCNTs with diameters in the range of 1.0 nm. Our results indicate that the TE performance of s-SWCNT-only material systems is approaching that of traditional inorganic semiconductors, paving the way for these materials to be used as the primary components for efficient, all-organic TE generators.


ACS Nano | 2017

Low-Temperature Single Carbon Nanotube Spectroscopy of sp3 Quantum Defects

Xiaowei He; Brendan J. Gifford; Nicolai Hartmann; Rachelle Ihly; Xuedan Ma; Svetlana Kilina; Yue Luo; Kamran Shayan; Stefan Strauf; Jeffrey L. Blackburn; Sergei Tretiak; Stephen K. Doorn; Han Htoon

Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. We observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral line width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 μeV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. These findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.


ACS Nano | 2016

Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport

Nicolai Hartmann; Rajib Pramanik; Anne-Marie Dowgiallo; Rachelle Ihly; Jeffrey L. Blackburn; Stephen K. Doorn

Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood. Here, we present the results of a combined pump-probe and photoluminescence imaging study of polyfluorene (PFO)-wrapped (6,5) and (7,5) SWCNTs that provide additional insight into the role played by polymer structures in defining exciton transport. Pump-probe measurements suggest exciton transport occurs over larger length scales in films composed of PFO-wrapped (7,5) SWCNTs, compared to those prepared from PFO-bpy-wrapped (6,5) SWCNTs. To explore the role the difference in polymer structure may play as a possible origin of differing transport behaviors, we performed a photoluminescence imaging study of individual polymer-wrapped (6,5) and (7,5) SWCNTs. The PFO-bpy-wrapped (6,5) SWCNTs showed more uniform intensity distributions along their lengths, in contrast to the PFO-wrapped (7,5) SWCNTs, which showed irregular, discontinuous intensity distributions. These differences likely originate from differences in surface coverage and suggest the PFO wrapping on (7,5) nanotubes produces a more open surface structure than is available with the PFO-bpy wrapping of (6,5) nanotubes. The open structure likely leads to improved intertube coupling that enhances exciton transport within the (7,5) films, consistent with the results of our pump-probe measurements.


Nature Communications | 2017

Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

Lance M. Wheeler; David T. Moore; Rachelle Ihly; Noah J. Stanton; Elisa M. Miller; Robert C. Tenent; Jeffrey L. Blackburn; Nathan R. Neale

Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer—composed of a metal halide perovskite-methylamine complex—from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.Conventional smart windows with tunable transparency are based on electrochromic systems that consumes energy. Here Wheeler et al. demonstrate a halide perovskite based photo-switchable window that dynamically responds to sunlight and change colors via reversible phase transitions.

Collaboration


Dive into the Rachelle Ihly's collaboration.

Top Co-Authors

Avatar

Jeffrey L. Blackburn

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Ferguson

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Noah J. Stanton

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen K. Doorn

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Obadiah G. Reid

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley A. MacLeod

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Isaac E. Gould

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kevin S. Mistry

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge