Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Monaghan is active.

Publication


Featured researches published by Andrew J. Monaghan.


Geophysical Research Letters | 2011

Revisiting the Earth's sea-level and energy budgets from 1961 to 2008

John A. Church; Neil J. White; Leonard F. Konikow; Catia M. Domingues; J. Graham Cogley; Eric Rignot; Jonathan M. Gregory; Michiel R. van den Broeke; Andrew J. Monaghan; I. Velicogna

We review the sea-level and energy budgets together from 1961, using recent and updated estimates of all terms. From 1972 to 2008, the observed sea-level rise (1.8 ± 0.2 mm yr−1 from tide gauges alone and 2.1 ± 0.2 mm yr−1 from a combination of tide gauges and altimeter observations) agrees well with the sum of contributions (1.8 ± 0.4 mm yr−1) in magnitude and with both having similar increases in the rate of rise during the period. The largest contributions come from ocean thermal expansion (0.8 mm yr−1) and the melting of glaciers and ice caps (0.7 mm yr−1), with Greenland and Antarctica contributing about 0.4 mm yr−1. The cryospheric contributions increase through the period (particularly in the 1990s) but the thermosteric contribution increases less rapidly. We include an improved estimate of aquifer depletion (0.3 mm yr−1), partially offsetting the retention of water in dams and giving a total terrestrial storage contribution of −0.1 mm yr−1. Ocean warming (90% of the total of the Earths energy increase) continues through to the end of the record, in agreement with continued greenhouse gas forcing. The aerosol forcing, inferred as a residual in the atmospheric energy balance, is estimated as −0.8 ± 0.4 W m−2 for the 1980s and early 1990s. It increases in the late 1990s, as is required for consistency with little surface warming over the last decade. This increase is likely at least partially related to substantial increases in aerosol emissions from developing nations and moderate volcanic activity.


Journal of Climate | 2011

An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses

David H. Bromwich; Julien P. Nicolas; Andrew J. Monaghan

AbstractThis study evaluates the temporal variability of the Antarctic surface mass balance, approximated as precipitation minus evaporation (P − E), and Southern Ocean precipitation in five global reanalyses during 1989–2009. The datasets consist of the NCEP/U.S. Department of Energy (DOE) Atmospheric Model Intercomparison Project 2 reanalysis (NCEP-2), the Japan Meteorological Agency (JMA) 25-year Reanalysis (JRA-25), ECMWF Interim Re-Analysis (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Application (MERRA), and the Climate Forecast System Reanalysis (CFSR). Reanalyses are known to be prone to spurious trends and inhomogeneities caused by changes in the observing system, especially in the data-sparse high southern latitudes. The period of study has seen a dramatic increase in the amount of satellite observations used for data assimilation.The large positive and statistically significant trends in mean Antarctic P − E and mean Southern Ocean precipitation in NCEP-2, JRA-25, and ...


Journal of Climate | 2009

Historical SAM Variability. Part II: Twentieth-Century Variability and Trends from Reconstructions, Observations, and the IPCC AR4 Models*

Ryan L. Fogt; Judith Perlwitz; Andrew J. Monaghan; David H. Bromwich; Julie M. Jones; Gareth J. Marshall

This second paper examines the Southern Hemisphere annular mode (SAM) variability from reconstructions, observed indices, and simulations from 17 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models from 1865 to 2005. Comparisons reveal the models do not fully simulate the duration of strong natural variability within the reconstructions during the 1930s and 1960s. Seasonal indices are examined to understand the relative roles of forced and natural fluctuations. The models capture the recent (1957‐2005) positive SAM trends in austral summer, which reconstructions indicate is the strongest trend during the last 150 yr; ozone depletion is the dominant mechanism driving these trends. In autumn, negative trends after 1930 in the reconstructions are stronger than the recent positive trend. Furthermore, model trends in autumn during 1957‐2005 are the most different from observations. Both of these conditions suggest the recent autumn trend is most likely natural climate variability, with external forcing playing a secondary role. Many models also produce significant spring trends during this period not seen in observations. Although insignificant, these differences arise because of vastly different spatial structures in the Southern Hemisphere pressure trends. As the trend differences between models and observations in austral spring have been increasing over the last 30 yr, care must be exercised when examining the future SAM projections and their impacts in this season.


Bulletin of the American Meteorological Society | 2003

Real-time mesoscale modeling over Antarctica: The Antarctic mesoscale prediction system

Jordan G. Powers; Andrew J. Monaghan; Arthur M. Cayette; David H. Bromwich; Ying-Hwa Kuo; Kevin W. Manning

In support of the United States Antarctic Program (USAP), the National Center for Atmospheric Research and the Byrd Polar Research Center of The Ohio State University have created the Antarctic Mesoscale Prediction System (AMPS): an experimental, real-time mesoscale modeling system covering Antarctica. AMPS has been designed to serve flight forecasters at McMurdo Station, to support science and operations around the continent, and to be a vehicle for the development of physical parameterizations suitable for polar regions. Since 2000, AMPS has been producing high-resolution forecasts (grids to 3.3 km) with the “Polar MM5,” a version of the fifth-generation Pennsylvania State University-NCAR Mesoscale Model tuned for the polar atmosphere. Beyond its basic mission of serving the USAP flight forecasters at McMurdo, AMPS has assisted both in emergency operations to save lives and in programs to explore the extreme polar environment. The former have included a medical evacuation from the South Pole and a marin...


Monthly Weather Review | 2005

Real-Time Forecasting for the Antarctic: An Evaluation of the Antarctic Mesoscale Prediction System (AMPS)*

David H. Bromwich; Andrew J. Monaghan; Kevin W. Manning; Jordan G. Powers

In response to the need for improved weather prediction capabilities in support of the U.S. Antarctic Program’s field operations, the Antarctic Mesoscale Prediction System (AMPS) was implemented in October 2000. AMPS employs the Polar MM5, a version of the fifth-generation Pennsylvania State University– NCAR Mesoscale Model optimized for use over ice sheets. The modeling system consists of several domains ranging in horizontal resolution from 90 km covering a large part of the Southern Hemisphere to 3.3 km over the complex terrain surrounding McMurdo, the hub of U.S. operations. The performance of the 30-km AMPS domain versus observations from manned and automatic weather stations is statistically evaluated for a 2-yr period from September 2001 through August 2003. The simulated 12–36-h surface pressure and near-surface temperature at most sites have correlations of r 0.95 and r 0.75, respectively, and small biases. Surface wind speeds reflect the complex topography and generally have correlations between 0.5 and 0.6, and positive biases of 1–2 m s 1 . In the free atmosphere, r 0.95 (geopotential height), r 0.9 (temperature), and r 0.8 (wind speed) at most sites. Over the annual cycle, there is little interseasonal variation in skill. Over the length of the forecast, a gradual decrease in skill is observed from hours 0–72. One exception is the surface pressure, which improves slightly in the first few hours, due in part to the model adjusting from surface pressure biases that are caused by the initialization technique over the high, cold terrain. The impact of the higher-resolution model domains over the McMurdo region is also evaluated. It is shown that the 3.3-km domain is more sensitive to spatial and temporal changes in the winds than the 10-km domain, which represents an overall improvement in forecast skill, especially on the windward side of the island where the Williams Field and Pegasus runways are situated, and in the lee of Ross Island, an important area of mesoscale cyclogenesis (although the correlation coefficients in these regions are still relatively low).


Journal of Climate | 2005

The Climate of the McMurdo, Antarctica, Region as Represented by One Year of Forecasts from the Antarctic Mesoscale Prediction System*

Andrew J. Monaghan; David H. Bromwich; Jordan G. Powers; Kevin W. Manning

Abstract In response to the need for improved weather prediction capabilities in support of the U.S. Antarctic Program’s Antarctic field operations, the Antarctic Mesoscale Prediction System (AMPS) was implemented in October 2000. AMPS employs a limited-area model, the Polar fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5), optimized for use over ice sheets. Twice-daily forecasts from the 3.3-km resolution domain of AMPS are joined together to study the climate of the McMurdo region from June 2002 to May 2003. Annual and seasonal distributions of wind direction and speed, 2-m temperature, mean sea level pressure, precipitation, and cloud fraction are presented. This is the first time a model adapted for polar use and with relatively high resolution is used to study the climate of the rugged McMurdo region, allowing several important climatological features to be investigated with unprecedented detail. Orographic effects exert an impor...


Philosophical Transactions of the Royal Society A | 2006

Recent trends in Antarctic snow accumulation from Polar MM5 simulations

Andrew J. Monaghan; David H. Bromwich; Sheng-Hung Wang

Polar MM5, a mesoscale atmospheric model optimized for use over polar ice sheets, is employed to simulate Antarctic accumulation in recent decades. Two sets of simulations, each with different initial and boundary conditions, are evaluated for the 17 yr period spanning 1985–2001. The initial and boundary conditions for the two sets of runs are provided by the (i) European Centre for Medium-Range Weather Forecasts 40 year Reanalysis, and (ii) National Centres for Environmental Prediction—Department of Energy Atmospheric Model Intercomparison Project Reanalysis II. This approach is used so that uncertainty can be assessed by comparing the two resulting datasets. There is broad agreement between the two datasets for the annual precipitation trends for 1985–2001. These generally agree with ice core and snow stake accumulation records at various locations around the continent, indicating broad areas of both upward and downward trends. Averaged over the continent the annual trends are small and not statistically different from zero, suggesting that recent Antarctic snowfall changes do not mitigate current sea-level rise. However, this result does not suggest that Antarctica is isolated from the recent climate changes occurring elsewhere on Earth. Rather, these are expressed by strong seasonal and regional precipitation changes.


Journal of Climate | 2010

Global Distribution and Characteristics of Diurnally Varying Low-Level Jets

Daran L. Rife; James O. Pinto; Andrew J. Monaghan; Christopher A. Davis; John R. Hannan

Abstract This study documents the global distribution and characteristics of diurnally varying low-level jets (LLJs), including their horizontal, vertical, and temporal structure, with a special emphasis on highlighting the underlying commonalities and unique qualities of the various nocturnal jets. Two tools are developed to accomplish this goal. The first is a 21-yr global reanalysis performed with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) using a horizontal grid spacing of 40 km. A unique characteristic of the reanalysis is the availability of hourly three-dimensional output, which permits the full diurnal cycle to be analyzed. Furthermore, the horizontal grid spacing of 40 km better resolves many physiographic features that host LLJs than other widely used global reanalyses. This makes possible a detailed examination of the systematic onset and cessation of the jets, including time–height representations of the diurnal cycle. The second tool is an index of nocturnal...


Monthly Weather Review | 2003

Distribution and characteristics of mesoscale cyclones in the antarctic: Ross Sea eastward to the Weddell Sea

Jorge F. Carrasco; David H. Bromwich; Andrew J. Monaghan

Abstract The mesoscale cyclone activity observed in the portion of Antarctica that faces the South Pacific Ocean and Weddell Sea area is summarized from a study of 1991. In general, area-normalized results reveal much greater mesoscale cyclonic activity over the Ross Sea/Ross Ice Shelf and southern Marie Byrd Land than on both sides of the Antarctic Peninsula. More than 50% of the observed mesoscale vortices are of the comma cloud type. The average diameter of mesoscale vortices is approximately 200 km near Terra Nova Bay, 270 km near Byrd Glacier, and 280 km near Siple Coast. Near the Antarctic Peninsula, the average diameter is about 370 km over the Bellingshausen Sea and 380 km on the Weddell Sea side. The largest percentage of deep vortices occurs over the Bellingshausen Sea sector (38% of all cases), where convective instability frequently occurs. Over the Ross Sea/Ross Ice Shelf and Weddell Sea sectors the majority of the mesoscale vortices are low cloud features that probably do not exceed the 700-...


Nature | 2017

Genomic epidemiology reveals multiple introductions of Zika virus into the United States

Nathan D. Grubaugh; Jason T. Ladner; Moritz U. G. Kraemer; Gytis Dudas; Amanda L. Tan; Karthik Gangavarapu; Michael R. Wiley; Stephen White; Julien Thézé; Diogo M. Magnani; Karla Prieto; Daniel Reyes; Andrea M. Bingham; Lauren M. Paul; Refugio Robles-Sikisaka; Glenn Oliveira; Darryl Pronty; Carolyn M. Barcellona; Hayden C. Metsky; Mary Lynn Baniecki; Kayla G. Barnes; Bridget Chak; Catherine A. Freije; Adrianne Gladden-Young; Andreas Gnirke; Cynthia Y. Luo; Bronwyn MacInnis; Christian B. Matranga; Daniel J. Park; James Qu

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016—several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.

Collaboration


Dive into the Andrew J. Monaghan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary H. Hayden

University of Colorado Colorado Springs

View shared research outputs
Top Co-Authors

Avatar

Rebecca J. Eisen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Daniel F. Steinhoff

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga V. Wilhelmi

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Lars Eisen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Eric Rignot

University of California

View shared research outputs
Top Co-Authors

Avatar

I. Velicogna

University of California

View shared research outputs
Top Co-Authors

Avatar

James O. Pinto

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge