Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. Velicogna is active.

Publication


Featured researches published by I. Velicogna.


Nature | 2009

Satellite-based estimates of groundwater depletion in India

Matthew Rodell; I. Velicogna; James S. Famiglietti

Groundwater is a primary source of fresh water in many parts of the world. Some regions are becoming overly dependent on it, consuming groundwater faster than it is naturally replenished and causing water tables to decline unremittingly. Indirect evidence suggests that this is the case in northwest India, but there has been no regional assessment of the rate of groundwater depletion. Here we use terrestrial water storage-change observations from the NASA Gravity Recovery and Climate Experiment satellites and simulated soil-water variations from a data-integrating hydrological modelling system to show that groundwater is being depleted at a mean rate of 4.0 ± 1.0 cm yr-1 equivalent height of water (17.7 ± 4.5 km3 yr-1) over the Indian states of Rajasthan, Punjab and Haryana (including Delhi). During our study period of August 2002 to October 2008, groundwater depletion was equivalent to a net loss of 109 km3 of water, which is double the capacity of India’s largest surface-water reservoir. Annual rainfall was close to normal throughout the period and we demonstrate that the other terrestrial water storage components (soil moisture, surface waters, snow, glaciers and biomass) did not contribute significantly to the observed decline in total water levels. Although our observational record is brief, the available evidence suggests that unsustainable consumption of groundwater for irrigation and other anthropogenic uses is likely to be the cause. If measures are not taken soon to ensure sustainable groundwater usage, the consequences for the 114,000,000 residents of the region may include a reduction of agricultural output and shortages of potable water, leading to extensive socioeconomic stresses.


Science | 2012

A Reconciled Estimate of Ice-Sheet Mass Balance

Andrew Shepherd; Erik R. Ivins; Geruo A; Valentina Roberta Barletta; Michael J. Bentley; Srinivas Bettadpur; Kate Briggs; David H. Bromwich; René Forsberg; Natalia Galin; Martin Horwath; Stan Jacobs; Ian Joughin; Matt A. King; Jan T. M. Lenaerts; Jilu Li; Stefan R. M. Ligtenberg; Adrian Luckman; Scott B. Luthcke; Malcolm McMillan; Rakia Meister; Glenn A. Milne; J. Mouginot; Alan Muir; Julien P. Nicolas; John Paden; Antony J. Payne; Hamish D. Pritchard; Eric Rignot; Helmut Rott

Warming and Melting Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed. Joughin et al. (p. 1172) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly—in some cases, not even agreeing about whether there is a net loss or a net gain—making it more difficult to project accurately future sea-level change. Shepherd et al. (p. 1183) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise. The mass balance of the polar ice sheets is estimated by combining the results of existing independent techniques. We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth’s polar ice sheets. We find that there is good agreement between different satellite methods—especially in Greenland and West Antarctica—and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by –142 ± 49, +14 ± 43, –65 ± 26, and –20 ± 14 gigatonnes year−1, respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year−1 to the rate of global sea-level rise.


Science | 2009

Partitioning recent Greenland mass loss

Michiel R. van den Broeke; Jonathan L. Bamber; J. Ettema; Eric Rignot; Ernst J. O. Schrama; Willem Jan van de Berg; Erik van Meijgaard; I. Velicogna; Bert Wouters

GRACE and Movement Together Recent measurements of the rate of mass loss from the Greenland ice sheet vary approximately by a factor of three. Resolving these discrepancies is essential for determining the current mass balance of the ice sheet and to project sea level rise in the future. Van den Broeke et al. (p. 984) obtained consistent estimates from two independent methods, one based on observations of ice movement combined with model calculations and the other on remote gravity measurements made by the GRACE (Gravity Recovery and Climate Experiment) satellites. The combination of these approaches also resolves the separate contributions of surface processes and of ice dynamics, the two major routes of ice mass loss. The major components of decay contributing to mass loss from the Greenland Ice Sheet can be quantified. Mass budget calculations, validated with satellite gravity observations [from the Gravity Recovery and Climate Experiment (GRACE) satellites], enable us to quantify the individual components of recent Greenland mass loss. The total 2000–2008 mass loss of ~1500 gigatons, equivalent to 0.46 millimeters per year of global sea level rise, is equally split between surface processes (runoff and precipitation) and ice dynamics. Without the moderating effects of increased snowfall and refreezing, post-1996 Greenland ice sheet mass losses would have been 100% higher. Since 2006, high summer melt rates have increased Greenland ice sheet mass loss to 273 gigatons per year (0.75 millimeters per year of equivalent sea level rise). The seasonal cycle in surface mass balance fully accounts for detrended GRACE mass variations, confirming insignificant subannual variation in ice sheet discharge.


Geophysical Research Letters | 2004

Time‐variable gravity from GRACE: First results

John Wahr; Sean Claude Swenson; Victor Zlotnicki; I. Velicogna

Eleven monthly GRACE gravity field solutions are now available for analyses. We show those fields can be used to recover monthly changes in water storage, both on land and in the ocean, to accuracies of 1.5 cm of water thickness when smoothed over 1000 km. The amplitude of the annually varying signal can be determined to 1.0 cm. Results are 30% better for a 1500 km smoothing radius, and 40% worse for a 750 km radius. We estimate the annually varying component of water storage for three large drainage basins (the Mississippi, the Amazon, and a region draining into the Bay of Bengal), to accuracies of 1.0–1.5 cm.


Science | 2006

Measurements of Time-Variable Gravity Show Mass Loss in Antarctica

I. Velicogna; John Wahr

Using measurements of time-variable gravity from the Gravity Recovery and Climate Experiment satellites, we determined mass variations of the Antarctic ice sheet during 2002–2005. We found that the mass of the ice sheet decreased significantly, at a rate of 152 ± 80 cubic kilometers of ice per year, which is equivalent to 0.4 ± 0.2 millimeters of global sea-level rise per year. Most of this mass loss came from the West Antarctic Ice Sheet.


Geophysical Research Letters | 2011

Revisiting the Earth's sea-level and energy budgets from 1961 to 2008

John A. Church; Neil J. White; Leonard F. Konikow; Catia M. Domingues; J. Graham Cogley; Eric Rignot; Jonathan M. Gregory; Michiel R. van den Broeke; Andrew J. Monaghan; I. Velicogna

We review the sea-level and energy budgets together from 1961, using recent and updated estimates of all terms. From 1972 to 2008, the observed sea-level rise (1.8 ± 0.2 mm yr−1 from tide gauges alone and 2.1 ± 0.2 mm yr−1 from a combination of tide gauges and altimeter observations) agrees well with the sum of contributions (1.8 ± 0.4 mm yr−1) in magnitude and with both having similar increases in the rate of rise during the period. The largest contributions come from ocean thermal expansion (0.8 mm yr−1) and the melting of glaciers and ice caps (0.7 mm yr−1), with Greenland and Antarctica contributing about 0.4 mm yr−1. The cryospheric contributions increase through the period (particularly in the 1990s) but the thermosteric contribution increases less rapidly. We include an improved estimate of aquifer depletion (0.3 mm yr−1), partially offsetting the retention of water in dams and giving a total terrestrial storage contribution of −0.1 mm yr−1. Ocean warming (90% of the total of the Earths energy increase) continues through to the end of the record, in agreement with continued greenhouse gas forcing. The aerosol forcing, inferred as a residual in the atmospheric energy balance, is estimated as −0.8 ± 0.4 W m−2 for the 1980s and early 1990s. It increases in the late 1990s, as is required for consistency with little surface warming over the last decade. This increase is likely at least partially related to substantial increases in aerosol emissions from developing nations and moderate volcanic activity.


Geophysical Research Letters | 2006

Accuracy of GRACE mass estimates

John Wahr; Sean Claude Swenson; I. Velicogna

The GRACE satellite mission is mapping the Earths gravity field at monthly intervals. The solutions can be used to determine monthly changes in the distribution of water on land and in the ocean. Most GRACE studies to-date have focussed on producing maps of mass variability, with little discussion of the errors in those maps. Error estimates, though, are necessary if GRACE is to be used as a diagnostic tool for assessing and improving hydrology and ocean models. Furthermore, only with error estimates can it be decided whether some feature of the data is real, and how accurately that feature is determined by GRACE. Here, we describe a method of constructing error estimates for GRACE mass values. The errors depend on latitude and smoothing radius. Once the errors are adjusted for these factors, we find they are normally-distributed. This allows us to assign confidence levels to GRACE mass estimates.


Nature | 2006

Acceleration of Greenland ice mass loss in spring 2004.

I. Velicogna; John Wahr

In 2001 the Intergovernmental Panel on Climate Change projected the contribution to sea level rise from the Greenland ice sheet to be between -0.02 and +0.09 m from 1990 to 2100 (ref. 1). However, recent work has suggested that the ice sheet responds more quickly to climate perturbations than previously thought, particularly near the coast. Here we use a satellite gravity survey by the Gravity Recovery and Climate Experiment (GRACE) conducted from April 2002 to April 2006 to provide an independent estimate of the contribution of Greenland ice mass loss to sea level change. We detect an ice mass loss of 248 ± 36 km3 yr-1, equivalent to a global sea level rise of 0.5 ± 0.1 mm yr-1. The rate of ice loss increased by 250 per cent between the periods April 2002 to April 2004 and May 2004 to April 2006, almost entirely due to accelerated rates of ice loss in southern Greenland; the rate of mass loss in north Greenland was almost constant. Continued monitoring will be needed to identify any future changes in the rate of ice loss in Greenland.


Geophysical Research Letters | 2010

Spread of ice mass loss into northwest Greenland observed by GRACE and GPS

Shfaqat Abbas Khan; John Wahr; Michael Bevis; I. Velicogna; Eric Kendrick

[1] Greenland’s main outlet glaciers have more than doubled their contribution to global sea level rise over the last decade. Recent work has shown that Greenland’s mass loss is still increasing. Here we show that the ice loss, which has been well‐documented over southern portions of Greenland, is now spreading up along the northwest coast, with this acceleration likely starting in late 2005. We support this with two lines of evidence. One is based on measurements fromtheGravityRecoveryandClimateExperiment(GRACE) satellite gravity mission, launched in March 2002. The other comes from continuous Global Positioning System (GPS) measurements from three long‐term sites on bedrock adjacent to the ice sheet. The GRACE results provide a direct measure of mass loss averaged over scales of a few hundred km. The GPS data are used to monitor crustal uplift caused by ice mass loss close to the sites. The GRACE results can be used to predict crustal uplift, which can be compared with the GPS data. In addition to showing that the northwest ice sheet margin is now losing mass, the uplift results from both the GPS measurements and the GRACE predictions show rapid acceleration in southeast Greenland in late 2003, followed by a moderate deceleration in 2006. Because that latter deceleration is weak, southeast Greenland still appears to be losing ice mass at a much higher rate than it was prior to fall 2003. In a more general sense, the analysis described here demonstrates that GPS uplift measurements can be used in combination with GRACE mass estimates to provide a better understanding of ongoing Greenland mass loss; an analysis approach that will become increasingly useful as long time spans of data accumulate from the 51 permanent GPS stations recently deployed around the edge of the ice sheet as part of the Greenland GPS Network (GNET). Citation: Khan, S. A., J. Wahr, M. Bevis, I. Velicogna, and E. Kendrick (2010), Spread of ice mass loss into northwest Greenland observed by GRACE and GPS, Geophys. Res. Lett., 37, L06501, doi:10.1029/2010GL042460.


Geophysical Research Letters | 2014

Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data

I. Velicogna; Tyler C. Sutterley; M. R. van den Broeke

We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Greenland and Antarctica for 2003-2013. We find that the total mass loss is controlled by only a few regions. In Greenland, the southeast and northwest generate 70% of the loss (280 ± 58 Gt/yr) mostly from ice dynamics, the southwest accounts for 54% of the total acceleration in loss (25.4 ± 1.2 Gt/yr 2 ) from a decrease in surface mass balance (SMB), followed by the northwest (34%), and we find no significant acceleration in the northeast. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 64% and 17%, respectively, of the total loss (180 ± 10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (11 ± 4 Gt/yr 2 ), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (63 ± 5 Gt/yr).

Collaboration


Dive into the I. Velicogna's collaboration.

Top Co-Authors

Avatar

John Wahr

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Eric Rignot

University of California

View shared research outputs
Top Co-Authors

Avatar

Sean Claude Swenson

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

P. Kishore

University of California

View shared research outputs
Top Co-Authors

Avatar

James S. Famiglietti

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Matthew Rodell

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Venkat Ratnam

National Atmospheric Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge