Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew J. Schroeder is active.

Publication


Featured researches published by Andrew J. Schroeder.


Genome Biology | 2002

Annotation of the Drosophila melanogaster euchromatic genome: a systematic review

Sima Misra; Madeline A. Crosby; Christopher J. Mungall; Beverley B. Matthews; Kathryn S. Campbell; Pavel Hradecky; Yanmei Huang; Joshua S Kaminker; Gillian Millburn; Simon E Prochnik; Christopher D. Smith; Jonathan L Tupy; Eleanor J Whitfield; Leyla Bayraktaroglu; Benjamin P. Berman; Brian Bettencourt; Susan E. Celniker; Aubrey D.N.J. de Grey; Rachel Drysdale; Nomi L. Harris; John Richter; Susan Russo; Andrew J. Schroeder; ShengQiang Shu; Mark Stapleton; Chihiro Yamada; Michael Ashburner; William M. Gelbart; Gerald M. Rubin; Suzanna E. Lewis

BackgroundThe recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.ResultsAlthough the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.ConclusionsIdentification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.


Nucleic Acids Research | 2015

FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations

Gilberto dos Santos; Andrew J. Schroeder; Joshua L. Goodman; Victor B. Strelets; Madeline A. Crosby; Jim Thurmond; David B. Emmert; William M. Gelbart

Release 6, the latest reference genome assembly of the fruit fly Drosophila melanogaster, was released by the Berkeley Drosophila Genome Project in 2014; it replaces their previous Release 5 genome assembly, which had been the reference genome assembly for over 7 years. With the enormous amount of information now attached to the D. melanogaster genome in public repositories and individual laboratories, the replacement of the previous assembly by the new one is a major event requiring careful migration of annotations and genome-anchored data to the new, improved assembly. In this report, we describe the attributes of the new Release 6 reference genome assembly, the migration of FlyBase genome annotations to this new assembly, how genome features on this new assembly can be viewed in FlyBase (http://flybase.org) and how users can convert coordinates for their own data to the corresponding Release 6 coordinates.


Nucleic Acids Research | 2017

FlyBase at 25: looking to the future

L. Sian Gramates; Steven J. Marygold; Gilberto dos Santos; Jose-Maria Urbano; Giulia Antonazzo; Beverley B. Matthews; Alix J. Rey; Christopher J. Tabone; Madeline A. Crosby; David B. Emmert; Kathleen Falls; Joshua L. Goodman; Yanhui Hu; Laura Ponting; Andrew J. Schroeder; Victor B. Strelets; Jim Thurmond; Pinglei Zhou

Since 1992, FlyBase (flybase.org) has been an essential online resource for the Drosophila research community. Concentrating on the most extensively studied species, Drosophila melanogaster, FlyBase includes information on genes (molecular and genetic), transgenic constructs, phenotypes, genetic and physical interactions, and reagents such as stocks and cDNAs. Access to data is provided through a number of tools, reports, and bulk-data downloads. Looking to the future, FlyBase is expanding its focus to serve a broader scientific community. In this update, we describe new features, datasets, reagent collections, and data presentations that address this goal, including enhanced orthology data, Human Disease Model Reports, protein domain search and visualization, concise gene summaries, a portal for external resources, video tutorials and the FlyBase Community Advisory Group.


Genome Biology | 2002

Annotation of the Drosophila melanogastereuchromatic genome: a systematic review

Sima Misra; Madeline A. Crosby; Chris Mungall; Beverley B. Matthews; Kathryn S. Campbell; Pavel Hradecky; Yanmei Huang; Joshua S Kaminker; Gillian Millburn; Simon E Prochnik; Christopher D. Smith; Jonathan L Tupy; Eleanor J Whitfield; Leyla Bayraktaroglu; Benjamin P. Berman; Brian Bettencourt; Susan E. Celniker; Aubrey D.N.J. de Grey; Rachel Drysdale; Nomi L Harris; John Richter; Susan Russo; Andrew J. Schroeder; ShengQiang Shu; Mark Stapleton; Chihiro Yamada; Michael Ashburner; William M. Gelbart; Gerald M. Rubin; Suzanna E. Lewis

BackgroundThe recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.ResultsAlthough the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.ConclusionsIdentification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.


G3: Genes, Genomes, Genetics | 2015

Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data

Beverley B. Matthews; Gilberto dos Santos; Madeline A. Crosby; David B. Emmert; Susan E. St. Pierre; L. Sian Gramates; Pinglei Zhou; Andrew J. Schroeder; Kathleen Falls; Victor B. Strelets; Susan Russo; William M. Gelbart

We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3′ UTRs (up to 15–18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.


Genome Biology | 2002

Annotation of the Drosophila melanogaster

Sima Misra; Madeline A. Crosby; Christopher J. Mungall; Beverley B. Matthews; Kathryn S. Campbell; Pavel Hradecky; Yanmei Huang; Joshua S Kaminker; Gillian Millburn; Simon E Prochnik; Christopher D. Smith; Jonathan L Tupy; Eleanor J Whitfield; Leyla Bayraktaroglu; Benjamin P. Berman; Brian Bettencourt; Susan E. Celniker; Aubrey D.N.J. de Grey; Rachel Drysdale; Nomi L. Harris; John Richter; Susan Russo; Andrew J. Schroeder; ShengQiang Shu; Mark Stapleton; Chihiro Yamada; Michael Ashburner; William M. Gelbart; Gerald M. Rubin; Suzanna E. Lewis

BackgroundThe recent completion of the Drosophila melanogaster genomic sequence to high quality and the availability of a greatly expanded set of Drosophila cDNA sequences, aligning to 78% of the predicted euchromatic genes, afforded FlyBase the opportunity to significantly improve genomic annotations. We made the annotation process more rigorous by inspecting each gene visually, utilizing a comprehensive set of curation rules, requiring traceable evidence for each gene model, and comparing each predicted peptide to SWISS-PROT and TrEMBL sequences.ResultsAlthough the number of predicted protein-coding genes in Drosophila remains essentially unchanged, the revised annotation significantly improves gene models, resulting in structural changes to 85% of the transcripts and 45% of the predicted proteins. We annotated transposable elements and non-protein-coding RNAs as new features, and extended the annotation of untranslated (UTR) sequences and alternative transcripts to include more than 70% and 20% of genes, respectively. Finally, cDNA sequence provided evidence for dicistronic transcripts, neighboring genes with overlapping UTRs on the same DNA sequence strand, alternatively spliced genes that encode distinct, non-overlapping peptides, and numerous nested genes.ConclusionsIdentification of so many unusual gene models not only suggests that some mechanisms for gene regulation are more prevalent than previously believed, but also underscores the complex challenges of eukaryotic gene prediction. At present, experimental data and human curation remain essential to generate high-quality genome annotations.


G3: Genes, Genomes, Genetics | 2015

Gene Model Annotations for Drosophila melanogaster: The Rule-Benders

Madeline A. Crosby; L. Sian Gramates; Gilberto dos Santos; Beverley B. Matthews; Susan E. St. Pierre; Pinglei Zhou; Andrew J. Schroeder; Kathleen Falls; David B. Emmert; Susan Russo; William M. Gelbart

In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads.


Genome Research | 2005

Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

Stephen Richards; Yue Liu; Brian Bettencourt; Pavel Hradecky; Stan Letovsky; Rasmus Nielsen; Kevin R. Thornton; Melissa J. Hubisz; Rui Chen; Richard P. Meisel; Olivier Couronne; Sujun Hua; Mark A. Smith; Peili Zhang; Jing Liu; Harmen J. Bussemaker; Marinus F. van Batenburg; Sally L. Howells; Steven E. Scherer; Erica Sodergren; Beverly B. Matthews; Madeline A. Crosby; Andrew J. Schroeder; Daniel Ortiz-Barrientos; Catharine M. Rives; Michael L. Metzker; Donna M. Muzny; Graham Scott; David Steffen; David A. Wheeler


Genome Research | 2007

Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes

Michael F. Lin; Joseph W. Carlson; Madeline A. Crosby; Beverley B. Matthews; Charles Yu; Soo Park; Kenneth H. Wan; Andrew J. Schroeder; L. Sian Gramates; Susan E. St. Pierre; Margaret Roark; Kenneth L. Wiley; Rob J. Kulathinal; Peili Zhang; Kyl V. Myrick; Jerry V. Antone; Susan E. Celniker; William M. Gelbart; Manolis Kellis


Nucleic Acids Research | 2002

The FlyBase database of the Drosophila genome projects andcommunity literature

William M. Gelbart; Leyla Bayraktaroglu; Brian Bettencourt; Kathy S Campbell; Madeline A. Crosby; David B. Emmert; Pavel Hradecky; Yanmei Huang; Stan Letovsky; Beverly Matthews; Susan Russo; Andrew J. Schroeder; Frank Smutniak; Pinglei Zhou; Mark Zytkovicz; Michael Ashburner; Rachel Drysdale; Aubrey D.N.J. de Grey; Rebecca E. Foulger; Gillian Millburn; Chihiro Yamada; Thomas C. Kaufman; Kathy A. Matthews; Don Gilbert; Gary Grumbling; Victor Strelets; C. Shemen; Gerald M. Rubin; Brian Berman; Erwin Frise

Collaboration


Dive into the Andrew J. Schroeder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald M. Rubin

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge