Andrew J. Syder
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrew J. Syder.
Nature | 2007
Matthew J. Evans; Thomas von Hahn; Donna M. Tscherne; Andrew J. Syder; Maryline Panis; Benno Wölk; Theodora Hatziioannou; Jane A. McKeating; Paul D. Bieniasz; Charles M. Rice
Hepatitis C virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. A better understanding of the viral life cycle, including the mechanisms of entry into host cells, is needed to identify novel therapeutic targets. Although HCV entry requires the CD81 co-receptor, and other host molecules have been implicated, at least one factor critical to this process remains unknown (reviewed in refs 1–3). Using an iterative expression cloning approach we identified claudin-1 (CLDN1), a tight junction component that is highly expressed in the liver, as essential for HCV entry. CLDN1 is required for HCV infection of human hepatoma cell lines and is the first factor to confer susceptibility to HCV when ectopically expressed in non-hepatic cells. Discrete residues within the first extracellular loop (EL1) of CLDN1, but not protein interaction motifs in intracellular domains, are critical for HCV entry. Moreover, antibodies directed against an epitope inserted in the CLDN1 EL1 block HCV infection. The kinetics of this inhibition indicate that CLDN1 acts late in the entry process, after virus binding and interaction with the HCV co-receptor CD81. With CLDN1 we have identified a novel key factor for HCV entry and a new target for antiviral drug development.
PLOS Pathogens | 2010
Deborah L. Diamond; Andrew J. Syder; Jon M. Jacobs; Christina M. Sorensen; Kathie Anne Walters; Sean Proll; Jason E. McDermott; Marina A. Gritsenko; Qibin Zhang; Rui Zhao; Thomas O. Metz; David G. Camp; Katrina M. Waters; Richard D. Smith; Charles M. Rice; Michael G. Katze
Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.
Nature Biotechnology | 2010
Christopher T. Jones; Maria Teresa Catanese; Lok Man J. Law; Salman R. Khetani; Andrew J. Syder; Alexander Ploss; Thomas S. Oh; John W. Schoggins; Margaret R. MacDonald; Sangeeta N. Bhatia; Charles M. Rice
Hepatitis C virus (HCV), which infects 2–3% of the world population, is a causative agent of chronic hepatitis and the leading indication for liver transplantation. The ability to propagate HCV in cell culture (HCVcc) is a relatively recent breakthrough and a key tool in the quest for specific antiviral therapeutics. Monitoring HCV infection in culture generally involves bulk population assays, use of genetically modified viruses and/or terminal processing of potentially precious samples. Here we develop a cell-based fluorescent reporter system that allows sensitive distinction of individual HCV-infected cells in live or fixed samples. We demonstrate use of this technology for several previously intractable applications, including live-cell imaging of viral propagation and host response, as well as visualizing infection of primary hepatocyte cultures. Integration of this reporter with modern image-based analysis methods could open new doors for HCV research.
Journal of Virology | 2011
Claire L. Brimacombe; Joe Grove; Luke W. Meredith; Ke Hu; Andrew J. Syder; Maria Victoria Flores; Jennifer M. Timpe; Sophie E. Krieger; Thomas F. Baumert; Timothy L. Tellinghuisen; Flossie Wong-Staal; Peter Balfe; Jane A. McKeating
ABSTRACT Hepatitis C virus (HCV) can initiate infection by cell-free particle and cell-cell contact-dependent transmission. In this study we use a novel infectious coculture system to examine these alternative modes of infection. Cell-to-cell transmission is relatively resistant to anti-HCV glycoprotein monoclonal antibodies and polyclonal immunoglobulin isolated from infected individuals, providing an effective strategy for escaping host humoral immune responses. Chimeric viruses expressing the structural proteins representing the seven major HCV genotypes demonstrate neutralizing antibody-resistant cell-to-cell transmission. HCV entry is a multistep process involving numerous receptors. In this study we demonstrate that, in contrast to earlier reports, CD81 and the tight-junction components claudin-1 and occludin are all essential for both cell-free and cell-to-cell viral transmission. However, scavenger receptor BI (SR-BI) has a more prominent role in cell-to-cell transmission of the virus, with SR-BI-specific antibodies and small-molecule inhibitors showing preferential inhibition of this infection route. These observations highlight the importance of targeting host cell receptors, in particular SR-BI, to control viral infection and spread in the liver.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Alexander Ploss; Salman R. Khetani; Christopher T. Jones; Andrew J. Syder; Kartik Trehan; V. Gaysinskaya; Kathy Mu; Kimberly D. Ritola; Charles M. Rice; Sangeeta N. Bhatia
Hepatitis C virus (HCV) remains a major public health problem, affecting approximately 130 million people worldwide. HCV infection can lead to cirrhosis, hepatocellular carcinoma, and end-stage liver disease, as well as extrahepatic complications such as cryoglobulinemia and lymphoma. Preventative and therapeutic options are severely limited; there is no HCV vaccine available, and nonspecific, IFN-based treatments are frequently ineffective. Development of targeted antivirals has been hampered by the lack of robust HCV cell culture systems that reliably predict human responses. Here, we show the entire HCV life cycle recapitulated in micropatterned cocultures (MPCCs) of primary human hepatocytes and supportive stroma in a multiwell format. MPCCs form polarized cell layers expressing all known HCV entry factors and sustain viral replication for several weeks. When coupled with highly sensitive fluorescence- and luminescence-based reporter systems, MPCCs have potential as a high-throughput platform for simultaneous assessment of in vitro efficacy and toxicity profiles of anti-HCV therapeutics.
Journal of Hepatology | 2011
Andrew J. Syder; Haekyung Lee; Mirjam B. Zeisel; Joe Grove; Eric Soulier; James T. MacDonald; Stephine Chow; Julia Chang; Thomas F. Baumert; Jane A. McKeating; Jeffrey McKelvy; Flossie Wong-Staal
BACKGROUND AND AIMS ITX 5061 is a clinical stage small molecule compound that promotes high-density lipoprotein (HDL) levels in animals and patients by targeting the scavenger receptor BI protein pathway. Since SR-BI is a known co-receptor for HCV infection, we evaluated these compounds for their effects on HCV entry. METHODS We obtained ITX 5061 and related compounds to characterize their interaction with SR-BI and effects on HCV entry and infection. RESULTS We confirmed that a tritium-labeled compound analog (ITX 7650) binds cells expressing SR-BI, and both ITX 5061 and ITX 7650 compete for HDL-mediated lipid transfer in an SR-BI dependent manner. Both molecules inhibit HCVcc and HCVpp infection of primary human hepatocytes and/or human hepatoma cell lines and have minimal effects on HCV RNA replication. Kinetic studies suggest that the compounds act at an early post-binding step. CONCLUSIONS These results suggest that the ITX compounds inhibit HCV infection with a mechanism of action distinct from other HCV therapies under development. Since ITX 5061 has already been evaluated in over 280 patients with good pharmacokinetic and safety profiles, it warrants proof-of-concept clinical studies in HCV infected patients.
PLOS Pathogens | 2009
Kathie Anne Walters; Andrew J. Syder; Sharon Lederer; Deborah L. Diamond; Bryan W. Paeper; Charles M. Rice; Michael G. Katze
The mechanisms of liver injury associated with chronic HCV infection, as well as the individual roles of both viral and host factors, are not clearly defined. However, it is becoming increasingly clear that direct cytopathic effects, in addition to immune-mediated processes, play an important role in liver injury. Gene expression profiling during multiple time-points of acute HCV infection of cultured Huh-7.5 cells was performed to gain insight into the cellular mechanism of HCV-associated cytopathic effect. Maximal induction of cell-death–related genes and appearance of activated caspase-3 in HCV-infected cells coincided with peak viral replication, suggesting a link between viral load and apoptosis. Gene ontology analysis revealed that many of the cell-death genes function to induce apoptosis in response to cell cycle arrest. Labeling of dividing cells in culture followed by flow cytometry also demonstrated the presence of significantly fewer cells in S-phase in HCV-infected relative to mock cultures, suggesting HCV infection is associated with delayed cell cycle progression. Regulation of numerous genes involved in anti-oxidative stress response and TGF-β1 signaling suggest these as possible causes of delayed cell cycle progression. Significantly, a subset of cell-death genes regulated during in vitro HCV infection was similarly regulated specifically in liver tissue from a cohort of HCV-infected liver transplant patients with rapidly progressive fibrosis. Collectively, these data suggest that HCV mediates direct cytopathic effects through deregulation of the cell cycle and that this process may contribute to liver disease progression. This in vitro system could be utilized to further define the cellular mechanism of this perturbation.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Jason C. Mills; Andrew J. Syder; Chieu V. Hong; Janaki L. Guruge; Farhang Raaii; Jeffrey I. Gordon
The parietal cell (PC) plays an important role in normal gastric physiology and in common diseases of the stomach. Although the genes involved in acid secretion are well known, there is limited molecular information about other aspects of PC function. We have generated a comprehensive database of genes expressed preferentially in PCs relative to other gastric mucosal cell lineages. PCs were purified from FVB/N mouse stomachs by lectin panning. cRNA generated from PC-enriched (PC+) and PC-depleted (PC−) populations were used to query oligonucleotide-based microarrays. False-positive signals were filtered by using a new algorithm for noise reduction and selected results independently audited by real-time quantitative reverse transcription (RT)-PCR. The annotated database of 240 genes reveals previously unappreciated aspects of cellular function, including factors that may mediate PC regulation of gastric stem cell proliferation. PC+ and PC− expression profiles were also prepared from germ-free mice 2 and 8 weeks after colonization with a clinical isolate of Helicobacter pylori (Hp)—the pathogen that produces acid-peptic disease (gastritis, ulcers) in humans. Whereas PC+ gene expression was remarkably constant, the PC− fractions demonstrated a robust, evolving host response, with increased expression of genes involved in cell motility/migration, extracellular matrix interactions, and IFN responses. The consistency of PC+ gene expression allowed identification of a cohort of 92 genes enriched in PCs under all conditions studied. These genes provide a molecular profile that can be used to define this epithelial lineage under a variety of physiologic, pharmacologic, and pathologic stimuli.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Andrew J. Syder; Jung D. Oh; Janaki L. Guruge; David O'Donnell; Maria Karlsson; Jason C. Mills; Britta M. Björkholm; Jeffrey I. Gordon
Helicobacter pylori infection of the human stomach is common and typically benign, although a subset of hosts develops severe pathology. Infection occurs in an organ with distinct microenvironments characterized by pronounced differences in the composition of acid-producing parietal cells. In this study, we examine determinants of bacterial tropism to various gastric niches by using germ-free normal and transgenic mice with an engineered parietal cell ablation. Mice were colonized for 8 weeks with a clinical isolate (Hp1) that expresses adhesins recognized by epithelial NeuAcα2,3Galβ1,4 glycan receptors. In normal mice, Hp1 has tropism for a parietal cell-deficient niche where sialylated glycans are expressed by a narrow band of pit cells positioned at the boundary between the squamous epithelium (forestomach) and the proximal glandular epithelium. Lymphoid aggregates that develop in this niche, but not elsewhere in the stomach, were analyzed by GeneChip and quantitative RT-PCR studies of laser capture microdissected mucosa and yielded a series of biomarkers indicative of immune cell activation and maturation. Genetic ablation of parietal cells produced a new source of NeuAcα2,3Galβ1,4 glycans in amplified gastric epithelial lineage progenitors, with accompanying expansion of Hp1 within the glandular epithelium. Lymphoid aggregates that develop in this formerly acid-protected epithelium have molecular features similar to those observed at the forestomach/glandular junction. These findings demonstrate the important roles played by parietal cells and glycan receptors in determining the positioning of H. pylori within the gastric ecosystem, and emphasize the need to consider the evolution of pathology within a given host in a niche-specific context.
Trends in Microbiology | 2000
Per Falk; Andrew J. Syder; Janaki L. Guruge; Denise E. Kirschner; Martin J. Blaser; Jeffrey I. Gordon
Mathematical modeling has helped develop hypotheses about the role of microbial and host parameters in the initial and subsequent phases of Helicobacter pylori colonization. Transgenic mice have been used to test the hypothesis that the outcome of colonization is influenced by whether bacteria can adhere to available epithelial cell receptors. Complementary use of modeling and experimental approaches should facilitate studies of H. pylori pathogenesis.