Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey I. Gordon is active.

Publication


Featured researches published by Jeffrey I. Gordon.


Nature Methods | 2010

QIIME allows analysis of high-throughput community sequencing data

J. Gregory Caporaso; Justin Kuczynski; Jesse Stombaugh; Kyle Bittinger; Frederic D. Bushman; Elizabeth K. Costello; Noah Fierer; Antonio González Peña; Julia K. Goodrich; Jeffrey I. Gordon; Gavin A. Huttley; Scott T. Kelley; Dan Knights; Jeremy E. Koenig; Ruth E. Ley; Catherine A. Lozupone; Daniel McDonald; Brian D. Muegge; Meg Pirrung; Jens Reeder; Joel R Sevinsky; Peter J. Turnbaugh; William A. Walters; Jeremy Widmann; Tanya Yatsunenko; Jesse Zaneveld; Rob Knight

Supplementary Figure 1 Overview of the analysis pipeline. Supplementary Table 1 Details of conventionally raised and conventionalized mouse samples. Supplementary Discussion Expanded discussion of QIIME analyses presented in the main text; Sequencing of 16S rRNA gene amplicons; QIIME analysis notes; Expanded Figure 1 legend; Links to raw data and processed output from the runs with and without denoising.


Nature | 2009

A core gut microbiome in obese and lean twins

Peter J. Turnbaugh; Micah Hamady; Tanya Yatsunenko; Brandi L. Cantarel; Alexis E. Duncan; Ruth E. Ley; Mitchell L. Sogin; William J. Jones; Bruce A. Roe; Jason Affourtit; Michael Egholm; Bernard Henrissat; Andrew C. Heath; Rob Knight; Jeffrey I. Gordon

The human distal gut harbours a vast ensemble of microbes (the microbiota) that provide important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides. Studies of a few unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is used and stored. Here we characterize the faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers, to address how host genotype, environmental exposure and host adiposity influence the gut microbiome. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage, level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiological states (obese compared with lean).


Nature | 2006

An obesity-associated gut microbiome with increased capacity for energy harvest.

Peter J. Turnbaugh; Ruth E. Ley; Michael A. Mahowald; Vincent Magrini; Elaine R. Mardis; Jeffrey I. Gordon

The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an ‘obese microbiota’ results in a significantly greater increase in total body fat than colonization with a ‘lean microbiota’. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.


Nature | 2006

Microbial ecology: Human gut microbes associated with obesity

Ruth E. Ley; Peter J. Turnbaugh; Samuel Klein; Jeffrey I. Gordon

Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. Here we show that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet. Our findings indicate that obesity has a microbial component, which might have potential therapeutic implications.


Nature | 2007

The human microbiome project

Peter J. Turnbaugh; Ruth E. Ley; Micah Hamady; Claire M. Fraser-Liggett; Rob Knight; Jeffrey I. Gordon

A strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease.


Nature | 2012

Human gut microbiome viewed across age and geography

Tanya Yatsunenko; Federico E. Rey; Mark Manary; Indi Trehan; Maria Gloria Dominguez-Bello; Monica Contreras; Magda Magris; Glida Hidalgo; Robert N. Baldassano; Andrey P. Anokhin; Andrew C. Heath; Barbara B. Warner; Jens Reeder; Justin Kuczynski; J. Gregory Caporaso; Catherine A. Lozupone; Christian L. Lauber; Jose C. Clemente; Dan Knights; Rob Knight; Jeffrey I. Gordon

Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, here we characterize bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy children and adults from the Amazonas of Venezuela, rural Malawi and US metropolitan areas and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial assemblages and functional gene repertoires were noted between US residents and those in the other two countries. These distinctive features are evident in early infancy as well as adulthood. Our findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations and the impact of westernization.


Science | 2006

Metagenomic Analysis of the Human Distal Gut Microbiome

Steven R. Gill; Mihai Pop; Robert T. DeBoy; Paul B. Eckburg; Peter J. Turnbaugh; Buck S. Samuel; Jeffrey I. Gordon; David A. Relman; Claire M. Fraser-Liggett; Karen E. Nelson

The human intestinal microbiota is composed of 1013 to 1014 microorganisms whose collective genome (“microbiome”) contains at least 100 times as many genes as our own genome. We analyzed ∼78 million base pairs of unique DNA sequence and 2062 polymerase chain reaction–amplified 16S ribosomal DNA sequences obtained from the fecal DNAs of two healthy adults. Using metabolic function analyses of identified genes, we compared our human genome with the average content of previously sequenced microbial genomes. Our microbiome has significantly enriched metabolism of glycans, amino acids, and xenobiotics; methanogenesis; and 2-methyl-d-erythritol 4-phosphate pathway–mediated biosynthesis of vitamins and isoprenoids. Thus, humans are superorganisms whose metabolism represents an amalgamation of microbial and human attributes.


Cell | 2006

Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine

Ruth E. Ley; Daniel A. Peterson; Jeffrey I. Gordon

The human gut is populated with as many as 100 trillion cells, whose collective genome, the microbiome, is a reflection of evolutionary selection pressures acting at the level of the host and at the level of the microbial cell. The ecological rules that govern the shape of microbial diversity in the gut apply to mutualists and pathogens alike.


Science | 2008

Evolution of mammals and their gut microbes

Ruth E. Ley; Micah Hamady; Catherine A. Lozupone; Peter J. Turnbaugh; Rob Roy Ramey; J. Stephen Bircher; Michael L. Schlegel; Tammy A. Tucker; Mark D. Schrenzel; Rob Knight; Jeffrey I. Gordon

Mammals are metagenomic in that they are composed of not only their own gene complements but also those of all of their associated microbes. To understand the coevolution of the mammals and their indigenous microbial communities, we conducted a network-based analysis of bacterial 16S ribosomal RNA gene sequences from the fecal microbiota of humans and 59 other mammalian species living in two zoos and in the wild. The results indicate that host diet and phylogeny both influence bacterial diversity, which increases from carnivory to omnivory to herbivory; that bacterial communities codiversified with their hosts; and that the gut microbiota of humans living a modern life-style is typical of omnivorous primates.


Science | 2009

Bacterial Community Variation in Human Body Habitats Across Space and Time

Elizabeth K. Costello; Christian L. Lauber; Micah Hamady; Noah Fierer; Jeffrey I. Gordon; Rob Knight

Growing on You The human gut and skin harbor diverse microbial communities that are known to vary strikingly among individuals. Here, Costello et al. (p. 1694, published online 5 November) analyzed microbial diversity among several distinct body habitats (including the gut, mouth, inside the ears and nose, and skin) of the same person at different times. They found that body habitat had more influence on microbial community composition than temporal differences and variation among people. Some skin locations, such as the index finger, back of the knee, and sole of the foot, on occasion harbored higher microbial diversity than the gut or oral cavity. The composition of microbial communities on the human body is primarily determined by their location. Elucidating the biogeography of bacterial communities on the human body is critical for establishing healthy baselines from which to detect differences associated with diseases. To obtain an integrated view of the spatial and temporal distribution of the human microbiota, we surveyed bacteria from up to 27 sites in seven to nine healthy adults on four occasions. We found that community composition was determined primarily by body habitat. Within habitats, interpersonal variability was high, whereas individuals exhibited minimal temporal variability. Several skin locations harbored more diverse communities than the gut and mouth, and skin locations differed in their community assembly patterns. These results indicate that our microbiota, although personalized, varies systematically across body habitats and time; such trends may ultimately reveal how microbiome changes cause or prevent disease.

Collaboration


Dive into the Jeffrey I. Gordon's collaboration.

Top Co-Authors

Avatar

Rob Knight

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thaddeus S. Stappenbeck

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin A. Roth

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lora V. Hooper

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Catherine A. Lozupone

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Robert J. Duronio

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George W. Gokel

University of Missouri–St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge