Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew M. Carleton is active.

Publication


Featured researches published by Andrew M. Carleton.


Bulletin of the American Meteorological Society | 2010

Impacts of land use/land cover change on climate and future research priorities.

Rezaul Mahmood; Roger A. Pielke; Kenneth G. Hubbard; Dev Niyogi; Gordon B. Bonan; Peter J. Lawrence; Richard T. McNider; Clive McAlpine; Andrés Etter; Samuel Gameda; Budong Qian; Andrew M. Carleton; Adriana B. Beltran-Przekurat; Thomas N. Chase; Arturo I. Quintanar; Jimmy O. Adegoke; Sajith Vezhapparambu; Glen Conner; Salvi Asefi; Elif Sertel; David R. Legates; Yuling Wu; Robert Hale; Oliver W. Frauenfeld; Anthony Watts; Marshall Shepherd; Chandana Mitra; Valentine G. Anantharaj; Souleymane Fall; Robert Lund

Several recommendations have been proposed for detecting land use and land cover change (LULCC) on the environment from, observed climatic records and to modeling to improve its understanding and its impacts on climate. Researchers need to detect LULCCs accurately at appropriate scales within a specified time period to better understand their impacts on climate and provide improved estimates of future climate. The US Climate Reference Network (USCRN) can be helpful in monitoring impacts of LULCC on near-surface atmospheric conditions, including temperature. The USCRN measures temperature, precipitation, solar radiation, and ground or skin temperature. It is recommended that the National Climatic Data Center (NCDC) and other climate monitoring agencies develop plans and seek funds to address any monitoring biases that are identified and for which detailed analyses have not been completed.


Journal of Climate | 2004

The SCAR READER Project: Toward a High-Quality Database of Mean Antarctic Meteorological Observations

John Turner; Steve Colwell; Gareth J. Marshall; Tom Lachlan-Cope; Andrew M. Carleton; Phil D. Jones; Victor Lagun; Phil A. Reid; Svetlana Iagovkina

A new dataset of monthly and annual mean near-surface climate data (temperature, surface and mean sea level pressure, and wind speed) for the Antarctic region has been created using historical observations [Scientific Committee on Antarctic Research (SCAR) Reference Antarctic Data for Environmental Research (READER)]. Where possible, 6-hourly surface synoptic and automatic weather station observations were used to compute the means. The ability to quality control the data at the level of individual observations has produced a more accurate series of monthly means than was available previously. At the time of writing, the mean data are available on the Internet (http://www.antarctica.ac.uk/met/programs-hosted.html). Data for 43 surface-staffed stations and 61 automatic weather stations are included in the database. Here, mean temperature, pressure, and wind speed data for 19 occupied stations with long records are provided.


Journal of Climate | 1990

Mechanisms of Interannual Variability of the Southwest United States Summer Rainfall Maximum

Andrew M. Carleton; Duane A. Carpenter; Paul J. Weser

Abstract The mid-summer rainfall singularity of the Southwest United States (principally Arizona) exhibits marked variations on interannual and decadal time scales. Examination of the synoptic mechanisms involved in these variations is undertaken here. In particular, associations between the rainfall, the dominant latitude of the summertime mid-tropospheric subtropical ridge (STR) over the southwest United States, and the sea surface temperatures (SSTs) of the equatorial and North Pacific region are documented. The analysis utilizes a composite approach for sets of extreme years chosen on the basis of the rainfall and circulation anomalies. It is found that northward (southward) displaced seasonal STR is associated with wetter (drier) summers in Arizona. Further, these extremes have tended to follow winters characterized by positive (negative) phases of the Pacific-North America (PNA) teleconnection pattern. The latter association arises, at least in part from the “memory” imparted to the atmosphere by th...


Nature | 2002

Contrails reduce daily temperature range.

David J. Travis; Andrew M. Carleton; Ryan G. Lauritsen

The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11–14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period.


Climate Dynamics | 1989

Antarctic sea-ice relationships with indices of the atmospheric circulation of the Southern Hemisphere

Andrew M. Carleton

A link between the Antarctic sea-ice extent and low-frequency atmospheric variations, particularly ENSO, has been suggested by recent modeling and empirical studies. This question is examined here using a high-resolution (by week, by region) data base of Antarctic sea-ice extent for the 1973–1982 period. Although of relatively short duration by Northern Hemisphere standards, such a data base offers an opportunity rare in Southern Hemisphere climate studies. The seaice variations are examined in the context of longer-term indices of the large-scale atmospheric circulation. These are a Southern Oscillation Index (SOI) and an index of sea-level pressure (SLP) wavenumber one in the Southern Hemisphere extratropics. The indices are updated through 1982, and their associations with regional-scale pressure indices in the Australia-New Zealand sector are also examined. The 1973–1982 period is anomalous when compared with the period 1951–1972. Correlation analysis of the monthly sea ice and circulation index values reveals that much of the apparent link between the ice and the SOI suggested in previous studies arises from autocorrelations present in both data sets and the strong annual cycle of sea-ice extent. Removing these effects from the data and re-running the correlations reveals that most of the resulting “significant” associations between the ice and one or other of the circulation indices can probably be explained on the basis of chance. In order to reconcile these findings with previous studies that show some strong ice-circulation interactions on regional scales, only those months in which significant correlations occur between both largescale circulation indices and the sea ice are examined further. These occur preferentially in the Ross and Weddell sectors, which constitute the regions contributing most to the variability of Antarctic sea ice. The analysis suggests that the sea-ice-extent changes lag the SOI by several months but may precede changes in extratropical SLP wavenumber one. Confirmation of these tentative regional ice extent-circulation teleconnections necessarily awaits the forward extension of the high-resolution sea-ice data base beyond the 10 years available here.


Journal of Hydrometeorology | 2002

Relations between Soil Moisture and Satellite Vegetation Indices in the U.S. Corn Belt

Jimmy O. Adegoke; Andrew M. Carleton

Abstract Satellite-derived vegetation indices extracted over locations representative of midwestern U.S. cropland and forest for the period 1990–94 are analyzed to determine the sensitivity of the indices to neutron probe soil moisture measurements of the Illinois Climate Network (ICN). The deseasoned (i.e., departures from multiyear mean annual cycle) soil moisture measurements are shown to be weakly correlated with the deseasoned full resolution (1 km × 1 km) normalized difference vegetation index (NDVI) and fractional vegetation cover (FVC) data over both land cover types. The association, measured by the Pearson-moment-correlation coefficient, is stronger over forest than over cropland during the growing season (April–September). The correlations improve successively when the NDVI and FVC pixel data are aggregated to 3 km × 3 km, 5 km × 5 km, and 7 km × 7 km areas. The improved correlations are partly explained by the reduction in satellite navigation errors as spatial aggregation occurs, as well as t...


Geophysical Research Letters | 2006

Fire-climate interactions in forests of the American Pacific Coast

Valerie Trouet; Alan H. Taylor; Andrew M. Carleton; Carl N. Skinner

We investigate relationships between climate and wildfire activity between 1929 and 2004 in Pacific coast forests of the United States. Self-Organizing Mapping (SOM) of annual area burned in National Forests (NF) in California, Oregon, and Washington identifies three contiguous NF groups and a fourth group of NF traversed by major highways. Large fire years in all groups are dry compared to small fire years. A sub-hemispheric circulation pattern of a strong trough over the North Pacific and a ridge over the West Coast is characteristic of large fire years in all groups. This pattern resembles the Pacific North American (PNA) teleconnection and positive phase of the Pacific Decadal Oscillation (PDO). A reverse PNA and negative PDO phase characterizes small fire years. Despite the effect of fire suppression management between 1929 and 2004, forest area burned is linked to climatic variations related to large-scale atmospheric circulation patterns.


Journal of Climate | 1988

Sea Ice–Atmosphere Signal of the Southern Oscillation in the Weddell Sea, Antarctica

Andrew M. Carleton

Abstract Composite analysis of weekly ship and shore observations of the Weddell Sea pack ice for extreme events of the Southern Oscillation (SO) occurring in the 1929–62 period reveals strong variations in ice-water concentrations in the early and late summer melt season. Substantially reduced ice concentrations (more open water) occur in December and early January of “warm” (El Nino) events (yr0) compared with the summer before (yr−1), and appear connected with the change to a stronger cyclonic atmospheric circulation over higher latitudes of the South Atlantic. Similarly consistent meteorology-sea ice associations appear to characterize the mid- to late summer of warm SO events (yr0) compared with yr0 of “cold” events. There is some evidence that the regionally dependent pressure and wind reversals (and possibly the associated sea ice concentration changes) in the Weddell sector have become more marked during SO events occurring since about the early 1950s. Some corroboration of changes in the sea ice-...


Journal of Climate | 2004

Regional Variations in U.S. Diurnal Temperature Range for the 11–14 September 2001 Aircraft Groundings: Evidence of Jet Contrail Influence on Climate

David J. Travis; Andrew M. Carleton; Ryan G. Lauritsen

The grounding of all commercial aircraft within U.S. airspace for the 3-day period following the 11 September 2001 terrorist attacks provides a unique opportunity to study the potential role of jet aircraft contrails in climate. Contrails are most similar to natural cirrus clouds due to their high altitude and strong ability to efficiently reduce outgoing infrared radiation. However, they typically have a higher albedo than cirrus; thus, they are better at reducing the surface receipt of incoming solar radiation. These contrail characteristics potentially suppress the diurnal temperature range (DTR) when contrail coverage is both widespread and relatively long lasting over a specific region. During the 11‐14 September 2001 grounding period natural clouds and contrails were noticeably absent on high-resolution satellite imagery across the regions that typically receive abundant contrail coverage. A previous analysis of temperature data for the grounding period reported an anomalous increase in the U.S.-averaged, 3-day DTR value. Here, the spatial variation of the DTR anomalies as well as the separate contributions from the maximum and minimum temperature departures are analyzed. These analyses are undertaken to better evaluate the role of jet contrail absence and synoptic weather patterns during the grounding period on the DTR anomalies. It is shown that the largest DTR increases occurred in regions where contrail coverage is typically most prevalent during the fall season (from satellite-based contrail observations for the 1977‐79 and 2000‐01 periods). These DTR increases occurred even in those areas reporting positive departures of tropospheric humidity, which may reduce DTR, during the grounding period. Also, there was an asymmetric departure from the normal maximum and minimum temperatures suggesting that daytime temperatures responded more to contrail absence than did nighttime temperatures, which responded more to synoptic conditions. The application of a statistical model that ‘‘retro-predicts’’ contrail-favored areas (CFAs) on the basis of upper-tropospheric meteorological conditions existing during the grounding period, supports the role of contrail absence in the surface temperature anomalies; especially for the western United States. Along with previous studies comparing surface climate data at stations beneath major flight paths with those farther away, the regionalization of the DTR anomalies during the September 2001 ‘‘control’’ period implies that contrails have been helping to decrease DTR in areas where they are most abundant, at least during the early fall season.


Journal of Geophysical Research | 1993

Synoptic aspects of Antarctic mesocyclones

Andrew M. Carleton; Mark Fitch

The characteristic regimes (formation and dissipation areas, tracks) and synoptic environments of cold air mesocyclones over Antarctic and Subantarctic latitudes are determined for the contrasting winters (June, July, and August) of 1988 and 1989. Defense Meteorological Satellite Program (DMSP) thermal infrared (IR) imagery is used in conjunction with southern hemisphere pressure/height analyses. Outbreaks of mesocyclones (“active periods”) are frequent in the Ross Sea sector in 1988. They are associated most often with areas of maximum horizontal gradient of the 1000- to 500-mbar thickness. Over higher latitudes of the Southeast Pacific in 1989, mesocyclones develop in association with a “cold pool” that migrates equatorward. The between-winter differences in mesocyclone frequencies are examined for associations with sea ice conditions and the continental katabatic winds using correlation and “superposed epoch” analysis of temperature data from selected automatic weather stations (AWSs). The results support a katabatic wind-sea ice extent-mesocyclone link for key sectors of the Antarctic.

Collaboration


Dive into the Andrew M. Carleton's collaboration.

Top Co-Authors

Avatar

David J. Travis

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Jimmy O. Adegoke

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan H. Taylor

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Carl N. Skinner

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

David L. Arnold

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Roger A. Pielke

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Turner

British Antarctic Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge