Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Andrew Mayewski is active.

Publication


Featured researches published by Paul Andrew Mayewski.


Geology | 1997

Holocene climatic instability: A prominent, widespread event 8200 yr ago

Richard B. Alley; Paul Andrew Mayewski; Todd Sowers; Minze Stuiver; Kendrick C. Taylor; Peter U. Clark

The most prominent Holocene climatic event in Greenland ice-core proxies, with approximately half the amplitude of the Younger Dryas, occurred ∼8000 to 8400 yr ago. This Holocene event affected regions well beyond the North Atlantic basin, as shown by synchronous increases in windblown chemical indicators together with a significant decrease in methane. Widespread proxy records from the tropics to the north polar regions show a short-lived cool, dry, or windy event of similar age. The spatial pattern of terrestrial and marine changes is similar to that of the Younger Dryas event, suggesting a role for North Atlantic thermohaline circulation. Possible forcings identified thus far for this Holocene event are small, consistent with recent model results indicating high sensitivity and strong linkages in the climatic system.


Science | 1995

Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core

S. R. O'Brien; Paul Andrew Mayewski; L. D. Meeker; D. A. Meese; Mark S. Twickler; Sallie I. Whitlow

Glaciochemical time series developed from Summit, Greenland, indicate that the chemical composition of the atmosphere was dynamic during the Holocene epoch. Concentrations of sea salt and terrestrial dusts increased in Summit snow during the periods 0 to 600, 2400 to 3100, 5000 to 6100, 7800 to 8800, and more than 11,300 years ago. The most recent increase, and also the most abrupt, coincides with the Little Ice Age. These changes imply that either the north polar vortex expanded or the meridional air flow intensified during these periods, and that temperatures in the mid to high northern latitudes were potentially the coldest since the Younger Dryas event.


Journal of Geophysical Research | 1997

Major features and forcing of high‐latitude northern hemisphere atmospheric circulation using a 110,000‐year‐long glaciochemical series

Paul Andrew Mayewski; L. D. Meeker; Mark S. Twickler; Sallie I. Whitlow; Qinzhao Yang; W. Berry Lyons; Michael L. Prentice

The Greenland Ice Sheet Project 2 glaciochemical series (sodium, potassium, ammonium, calcium, magnesium, sulfate, nitrate, and chloride) provides a unique view of the chemistry of the atmosphere and the history of atmospheric circulation over both the high latitudes and mid-low latitudes of the northern hemisphere. Interpretation of this record reveals a diverse array of environmental signatures that include the documentation of anthropogenically derived pollutants, volcanic and biomass burning events, storminess over marine surfaces, continental aridity and biogenic source strength plus information related to the controls on both high- and low-frequency climate events of the last 110,000 years. Climate forcings investigated include changes in insolation of the order of the major orbital cycles that control the long-term behavior of atmospheric circulation patterns through changes in ice volume (sea level), events such as the Heinrich events (massive discharges of icebergs first identified in the marine record) that are found to operate on a 6100-year cycle due largely to the lagged response of ice sheets to changes in insolation and consequent glacier dynamics, and rapid climate change events (massive reorganizations of atmospheric circulation) that are demonstrated to operate on 1450-year cycles. Changes in insolation and associated positive feedbacks related to ice sheets may assist in explaining favorable time periods and controls on the amplitude of massive rapid climate change events. Explanation for the exact timing and global synchroneity of these events is, however, more complicated. Preliminary evidence points to possible solar variability-climate associations for these events and perhaps others that are embedded in our ice-core-derived atmospheric circulation records.


Journal of Geophysical Research | 1997

The Greenland Ice Sheet Project 2 Depth-age Scale: Methods and Results

D. A. Meese; Anthony J. Gow; Richard B. Alley; Gregory A. Zielinski; Pieter Meiert Grootes; Michael Ram; Kendrick C. Taylor; Paul Andrew Mayewski; John F. Bolzan

The Greenland Ice Sheet Project 2 (GISP2) depth-age scale is presented based on a multiparameter continuous count approach, to a depth of 2800 m, using a systematic combination of parameters that have never been used to this extent before. The ice at 2800 m is dated at 110,000 years B.P. with an estimated error ranging from 1 to 10% in the top 2500 m of the core and averaging 20% between 2500 and 2800 m. Parameters used to date the core include visual stratigraphy, oxygen isotopic ratios of the ice, electrical conductivity measurements, laser-light scattering from dust, volcanic signals, and major ion chemistry. GISP2 ages for major climatic events agree with independent ages based on varve chronologies, calibrated radiocarbon dates, and other techniques within the combined uncertainties. Good agreement also is obtained with Greenland Ice Core Project ice core dates and with the SPECMAP marine timescale after correlation through the δ 18 O of O 2 . Although the core is deformed below 2800 m and the continuity of the record is unclear, we attempted to date this section of the core on the basis of the laser-light scattering of dust in the ice.


Journal of Climate | 1999

Maximum Temperature Trends in the Himalaya and Its Vicinity: An Analysis Based on Temperature Records from Nepal for the Period 1971–94

Arun B. Shrestha; Camerson P. Wake; Paul Andrew Mayewski; Jack E. Dibb

Analyses of maximum temperature data from 49 stations in Nepal for the period 1971‐94 reveal warming trends after 1977 ranging from 0.068 to 0.128 Cy r 21 in most of the Middle Mountain and Himalayan regions, while the Siwalik and Terai (southern plains) regions show warming trends less than 0.038 Cy r 21. The subset of records (14 stations) extending back to the early 1960s suggests that the recent warming trends were preceded by similar widespread cooling trends. Distributions of seasonal and annual temperature trends show high rates of warming in the high-elevation regions of the country (Middle Mountains and Himalaya), while low warming or even cooling trends were found in the southern regions. This is attributed to the sensitivity of mountainous regions to climate changes. The seasonal temperature trends and spatial distribution of temperature trends also highlight the influence of monsoon circulation. The Kathmandu record, the longest in Nepal (1921‐94), shows features similar to temperature trends in the Northern Hemisphere, suggesting links between regional trends and global scale phenomena. However, the magnitudes of trends are much enhanced in the Kathmandu as well as in the all-Nepal records. The authors’ analyses suggest that contributions of urbanization and local land use/cover changes to the all-Nepal record are minimal and that the all-Nepal record provides an accurate record of temperature variations across the entire region.


Reviews of Geophysics | 1997

Glaciochemistry of polar ice cores: A review

Michel Legrand; Paul Andrew Mayewski

Human activities have already modified the chemical composition of the natural atmosphere even in very remote regions of the world. The study of chemical parameters stored in solid precipitation and accumulated on polar ice sheets over the last several hundred thousand years provides a unique tool for obtaining information on the composition of the preindustrial atmosphere and its natural variability over the past. This paper deals with the chemistry of polar ice focused on the soluble mineral (Na+, NH4+, K+, Ca++, Mg++, H+, F−, Cl−, NO3−, SO4−−, and H2O2) and organic (methanesulfonate (CH3SO3−), formate (HCOO−), acetate (CH3COO−), and formaldehyde (HCHO)) species and their interpretation in terms of past atmospheric composition (aerosols and water soluble gaseous species). We discuss ice core dating, the difficulties connected with trace measurements, and the significance of the ionic composition of snow. We examine temporal (from the last decades back to the last climatic cycle) and spatial (including examples from coastal as well as central areas of Greenland and Antarctica) variations in the ionic budget of the precipitation and evaluate ice core studies in terms of the chemical composition of our past atmosphere. We review (1) how Greenland and Antarctic ice cores that span the last few centuries have provided information on the impact of human activities and (2) how the chemistry of deep ice cores provides information on various past natural phenomena such as climatic variations (glacial-interglacial changes, El Nino), volcanic eruptions, and large boreal forest fires.


Science | 1994

Record of Volcanism Since 7000 B.C. from the GISP2 Greenland Ice Core and Implications for the Volcano-Climate System.

Gregory A. Zielinski; Paul Andrew Mayewski; L. D. Meeker; Sallie I. Whitlow; Mark S. Twickler; M. C. Morrison; D. A. Meese; Anthony J. Gow; Richard B. Alley

Sulfate concentrations from continuous biyearly sampling of the GISP2 Greenland ice core provide a record of potential climate-forcing volcanism since 7000 B.C. Although 85 percent of the events recorded over the last 2000 years were matched to documented volcanic eruptions, only about 30 percent of the events from 1 to 7000 B.C. were matched to such events. Several historic eruptions may have been greater sulfur producers than previously thought. There are three times as many events from 5000 to 7000 B.C. as over the last two millennia with sulfate deposition equal to or up to five times that of the largest known historical eruptions. This increased volcanism in the early Holocene may have contributed to climatic cooling.


Science | 1994

Changes in Atmospheric Circulation and Ocean Ice Cover over the North Atlantic During the Last 41,000 Years

Paul Andrew Mayewski; L. D. Meeker; Sallie I. Whitlow; Mark S. Twickler; M. C. Morrison; P. Bloomfield; Gerard C. Bond; Richard B. Alley; Anthony J. Gow; D. A. Meese; Pieter Meiert Grootes; Michael Ram; Kendrick C. Taylor; W. Wumkes

High-resolution, continuous multivariate chemical records from a central Greenland ice core provide a sensitive measure of climate change and chemical composition of the atmosphere over the last 41,000 years. These chemical series reveal a record of change in the relative size and intensity of the circulation system that transported air masses to Greenland [defined here as the polar circulation index (PCI)] and in the extent of ocean ice cover. Massive iceberg discharge events previously defined from the marine record are correlated with notable expansions of ocean ice cover and increases in PCI. During stadials without discharge events, ocean ice cover appears to reach some common maximum level. The massive aerosol loadings and dramatic variations in ocean ice cover documented in ice cores should be included in climate modeling.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling

R. B. Firestone; Allen West; James P. Kennett; Luann Becker; Theodore E. Bunch; Zsolt Révay; Peter H. Schultz; T. Belgya; Douglas J. Kennett; Jon M. Erlandson; O. J. Dickenson; Reuben S. Harris; J. B. Kloosterman; P. Lechler; Paul Andrew Mayewski; J. Montgomery; Robert J. Poreda; Thomas H. Darrah; S. S. Que Hee; A. R. Smith; August Stich; W. Topping; James H. Wittke; Wendy S. Wolbach

A carbon-rich black layer, dating to ≈12.9 ka, has been previously identified at ≈50 Clovis-age sites across North America and appears contemporaneous with the abrupt onset of Younger Dryas (YD) cooling. The in situ bones of extinct Pleistocene megafauna, along with Clovis tool assemblages, occur below this black layer but not within or above it. Causes for the extinctions, YD cooling, and termination of Clovis culture have long been controversial. In this paper, we provide evidence for an extraterrestrial (ET) impact event at ≅12.9 ka, which we hypothesize caused abrupt environmental changes that contributed to YD cooling, major ecological reorganization, broad-scale extinctions, and rapid human behavioral shifts at the end of the Clovis Period. Clovis-age sites in North American are overlain by a thin, discrete layer with varying peak abundances of (i) magnetic grains with iridium, (ii) magnetic microspherules, (iii) charcoal, (iv) soot, (v) carbon spherules, (vi) glass-like carbon containing nanodiamonds, and (vii) fullerenes with ET helium, all of which are evidence for an ET impact and associated biomass burning at ≈12.9 ka. This layer also extends throughout at least 15 Carolina Bays, which are unique, elliptical depressions, oriented to the northwest across the Atlantic Coastal Plain. We propose that one or more large, low-density ET objects exploded over northern North America, partially destabilizing the Laurentide Ice Sheet and triggering YD cooling. The shock wave, thermal pulse, and event-related environmental effects (e.g., extensive biomass burning and food limitations) contributed to end-Pleistocene megafaunal extinctions and adaptive shifts among PaleoAmericans in North America.


Antarctic Science | 2009

Antarctic climate change and the environment

Peter Convey; Robert Bindschadler; G. di Prisco; Eberhard Fahrbach; Julian Gutt; Dominic A. Hodgson; Paul Andrew Mayewski; Colin Summerhayes; John Turner

Abstract The Antarctic climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system. We review these variations from the perspective of the geological and glaciological records and the recent historical period from which we have instrumental data (∼the last 50 years). We consider their consequences for the biosphere, and show how the latest numerical models project changes into the future, taking into account human actions in the form of the release of greenhouse gases and chlorofluorocarbons into the atmosphere. In doing so, we provide an essential Southern Hemisphere companion to the Arctic Climate Impact Assessment.

Collaboration


Dive into the Paul Andrew Mayewski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Twickler

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sallie I. Whitlow

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Shichang Kang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Susan Kaspari

Central Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cameron P. Wake

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy A. N. Bertler

Victoria University of Wellington

View shared research outputs
Researchain Logo
Decentralizing Knowledge