Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew M. Kaz is active.

Publication


Featured researches published by Andrew M. Kaz.


Gastroenterology | 2014

Differences in DNA Methylation Signatures Reveal Multiple Pathways of Progression From Adenoma to Colorectal Cancer

Yanxin Luo; Chao Jen Wong; Andrew M. Kaz; Slavomir Dzieciatkowski; Kelly T. Carter; Shelli M. Morris; Jianping Wang; Joseph Willis; Karen W. Makar; Cornelia M. Ulrich; James Lutterbaugh; Martha J. Shrubsole; Wei Zheng; Sanford D. Markowitz; William M. Grady

BACKGROUND & AIMS Genetic and epigenetic alterations contribute to the pathogenesis of colorectal cancer (CRC). There is considerable molecular heterogeneity among colorectal tumors, which appears to arise as polyps progress to cancer. This heterogeneity results in different pathways to tumorigenesis. Although epigenetic and genetic alterations have been detected in conventional tubular adenomas, little is known about how these affect progression to CRC. We compared methylomes of normal colon mucosa, tubular adenomas, and colorectal cancers to determine how epigenetic alterations might contribute to cancer formation. METHODS We conducted genome-wide array-based studies and comprehensive data analyses of aberrantly methylated loci in 41 normal colon tissue, 42 colon adenomas, and 64 cancers using HumanMethylation450 arrays. RESULTS We found genome-wide alterations in DNA methylation in the nontumor colon mucosa and cancers. Three classes of cancers and 2 classes of adenomas were identified based on their DNA methylation patterns. The adenomas separated into classes of high-frequency methylation and low-frequency methylation. Within the high-frequency methylation adenoma class a subset of adenomas had mutant KRAS. Additionally, the high-frequency methylation adenoma class had DNA methylation signatures similar to those of cancers with low or intermediate levels of methylation, and the low-frequency methylation adenoma class had methylation signatures similar to that of nontumor colon tissue. The CpG sites that were differentially methylated in these signatures are located in intragenic and intergenic regions. CONCLUSIONS Genome-wide alterations in DNA methylation occur during early stages of progression of tubular adenomas to cancer. These findings reveal heterogeneity in the pathogenesis of colorectal cancer, even at the adenoma step of the process.


Cancer Letters | 2014

Epigenetic biomarkers in esophageal cancer.

Andrew M. Kaz; William M. Grady

The aberrant DNA methylation of tumor suppressor genes is well documented in esophageal cancer, including adenocarcinoma (EAC) and squamous cell carcinoma (ESCC) as well as in Barretts esophagus (BE), a pre-malignant condition that is associated with chronic acid reflux. BE is a well-recognized risk factor for the development of EAC, and consequently the standard of care is for individuals with BE to be placed in endoscopic surveillance programs aimed at detecting early histologic changes that associate with an increased risk of developing EAC. Yet because the absolute risk of EAC in individuals with BE is minimal, a clinical need in the management of BE is the identification of additional risk markers that will indicate individuals who are at a significant absolute risk of EAC so that they may be subjected to more intensive surveillance. The best currently available risk marker is the degree of dysplasia in endoscopic biopsies from the esophagus; however, this marker is suboptimal for a variety of reasons. To date, there are no molecular biomarkers that have been translated to widespread clinical practice. The search for biomarkers, including hypermethylated genes, for either the diagnosis of BE, EAC, or ESCC or for risk stratification for the development of EAC in those with BE is currently an area of active research. In this review, we summarize the status of identified candidate epigenetic biomarkers for BE, EAC, and ESCC. Most of these aberrantly methylated genes have been described in the context of early detection or diagnostic markers; others might prove useful for estimating prognosis or predicting response to treatment. Finally, special attention will be paid to some of the challenges that must be overcome in order to develop clinically useful esophageal cancer biomarkers.


Epigenetics | 2011

DNA methylation profiling in Barrett's esophagus and esophageal adenocarcinoma reveals unique methylation signatures and molecular subclasses

Andrew M. Kaz; Chao Jen Wong; Yanxin Luo; Jeffrey B. Virgin; M. Kay Washington; Joseph Willis; Rom S. Leidner; Amitabh Chak; William M. Grady

Barrett’s esophagus (BE) is a metaplastic process whereby the normal stratified, squamous esophageal epithelium is replaced by specialized intestinal epithelium. Barrett’s is the only accepted precursor lesion for esophageal adenocarcinoma (EAC), a solid tumor that is rapidly increasing in incidence in western countries. BE evolves into EAC through intermediate steps that involve increasing degrees of dysplasia. Current histologic criteria are quite subjective and the clinical behavior of BE is highly variable and difficult to predict using these standards. It is widely believed that molecular alterations present in BE and EAC will provide more precise prognostic and predictive markers for these conditions than the current clinical and histologic features in use. In order to further define molecular alterations that can classify unique groups of BE and EAC, we utilized methylation microarrays to compare the global gene methylation status of a collection of normal squamous, BE, BE + high-grade dysplasia (HGD) and EAC cases. We found distinct global methylation signatures, as well as differential methylation of specific genes, that discriminated these histological groups. We also noted high and low methylation epigenotypes among the BE and EAC cases. Additional validation of those CpG sites that distinguished BE from BE + HGD and EAC may lead to the discovery of useful biomarkers with potential clinical applications in the diagnosis and prognosis of BE and EAC.


Epigenetics | 2014

Patterns of DNA methylation in the normal colon vary by anatomical location, gender, and age.

Andrew M. Kaz; Chao Jen Wong; Slavomir Dzieciatkowski; Yanxin Luo; Robert E. Schoen; William M. Grady

Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect.


International Journal of Cancer | 2007

Evidence for the role of aberrant DNA methylation in the pathogenesis of Lynch syndrome adenomas

Andrew M. Kaz; Young Ho Kim; Slavomir Dzieciatkowski; Henry T. Lynch; Patrice Watson; Mary Kay Washington; Li Lin; William M. Grady

Colorectal cancer (CRC) forms through a series of histologic steps that are accompanied by mutations and epigenetic alterations, which is called the polyp‐cancer sequence. The role of epigenetic alterations, such as aberrant DNA methylation, in the polyp‐cancer sequence in sporadic CRC and particularly in hereditary colon cancer is not well understood. Consequently, we assessed the methylation status of CDKN2A/p16, MGMT, MLH1 and p14ARF in adenomas arising in the Lynch syndrome, a familial colon cancer syndrome caused by MLH1 and MSH2 mutations, to determine if DNA methylation is a “second hit” mechanism in CRC and to characterize the role of DNA methylation in the polyp phase of the Lynch syndrome. We found MLH1 and p14ARF are methylated in 53 and 60% of the Lynch syndrome adenomas and in 4 and 20% of sporadic adenomas, whereas CDKN2A/p16 and MGMT are methylated in 6 and 14% of the Lynch syndrome adenomas versus 50 and 64% of sporadic adenomas. Therefore, the frequency and pattern of gene methylation varies between the Lynch syndrome and sporadic colon adenomas, implying differences in the molecular pathogenesis of the tumors. MLH1 methylation in the Lynch syndrome adenomas suggests gene methylation might have a role in the initiation of these neoplasms.


PLOS Genetics | 2013

NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer.

Yanxin Luo; Andrew M. Kaz; Samornmas Kanngurn; Piri Welsch; Shelli M. Morris; Jianping Wang; James Lutterbaugh; Sanford D. Markowitz; William M. Grady

NTRK3 is a member of the neurotrophin receptor family and regulates cell survival. It appears to be a dependence receptor, and thus has the potential to act as an oncogene or as a tumor suppressor gene. NTRK3 is a receptor for NT-3 and when bound to NT-3 it induces cell survival, but when NT-3 free, it induces apoptosis. We identified aberrantly methylated NTRK3 in colorectal cancers through a genome-wide screen for hypermethylated genes. This discovery led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. NTRK3 is methylated in 60% of colon adenomas and 67% of colon adenocarcinomas. NTRK3 methylation suppresses NTRK3 expression. Reconstitution of NTRK3 induces apoptosis in colorectal cancers, if NT-3 is absent. Furthermore, the loss of NTRK3 expression associates with neoplastic transformation in vitro and in vivo. We also found that a naturally occurring mutant NTRK3 found in human colorectal cancer inhibits the tumor suppressor activity of NTRK3. In summary, our findings suggest NTRK3 is a conditional tumor suppressor gene that is commonly inactivated in colorectal cancer by both epigenetic and genetic mechanisms whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3.


Genes, Chromosomes and Cancer | 2012

Aberrantly methylated PKP1 in the progression of Barrett's esophagus to esophageal adenocarcinoma†

Andrew M. Kaz; Yanxin Luo; Slavomir Dzieciatkowski; Amitabh Chak; Joseph Willis; Melissa P. Upton; Rom S. Leidner; William M. Grady

The aberrant DNA methylation of tumor suppressor genes occurs frequently in Barretts esophagus (BE) and esophageal adenocarcinoma (EAC) and likely affects the initiation and progression of BE to EAC. In the present study, we discovered PKP1 as a novel methylated gene in EAC and then investigated the role of loss of PKP1, a constituent of the desmosome complex found in stratified epithelial layers, on the behavior of Barretts esophagus and esophageal adenocarcinoma cells. By using primary esophageal tissue samples we determined that PKP1 was rarely methylated in normal squamous esophagus (5/55; 9.1%) and BE (5/39; 12.8%) and more frequently methylated in Barretts esophagus with high‐grade dysplasia (HGD) or EAC (20/60; 33.3%; P < 0.05). Furthermore, PKP1 levels were decreased in BE and HGD/EAC cases compared to normal squamous esophagus cases. Knockdown of PKP1 in the BE cell lines CP‐A and CP‐D (both normally express PKP1) resulted in increased cell motility. Thus, PKP1 loss secondary to promoter methylation, as well as other mechanisms, may promote the progression of BE to EAC in a subset of patients via decreased desmosome assembly and increased cell motility.


Gastroenterology Clinics of North America | 2015

Genetic and Epigenetic Alterations in Barrett’s Esophagus and Esophageal Adenocarcinoma

Andrew M. Kaz; William M. Grady; Matthew D. Stachler; Adam J. Bass

Esophageal adenocarcinoma (EAC) develops from Barretts esophagus (BE), wherein normal squamous epithelia is replaced by specialized intestinal metaplasia in response to chronic gastroesophageal acid reflux. BE can progress to low- and high-grade dysplasia, intramucosal, and invasive carcinoma. Both BE and EAC are characterized by loss of heterozygosity, aneuploidy, specific genetic mutations, and clonal diversity. Given the limitations of histopathology, genomic and epigenomic analyses may improve the precision of risk stratification. Assays to detect molecular alterations associated with neoplastic progression could be used to improve the pathologic assessment of BE/EAC and to select high-risk patients for more intensive surveillance.


PLOS Computational Biology | 2016

A Molecular Clock Infers Heterogeneous Tissue Age Among Patients with Barrett’s Esophagus

Kit Curtius; Chao Jen Wong; William D. Hazelton; Andrew M. Kaz; Amitabh Chak; Joseph Willis; William M. Grady; E. Georg Luebeck

Biomarkers that drift differentially with age between normal and premalignant tissues, such as Barrett’s esophagus (BE), have the potential to improve the assessment of a patient’s cancer risk by providing quantitative information about how long a patient has lived with the precursor (i.e., dwell time). In the case of BE, which is a metaplastic precursor to esophageal adenocarcinoma (EAC), such biomarkers would be particularly useful because EAC risk may change with BE dwell time and it is generally not known how long a patient has lived with BE when a patient is first diagnosed with this condition. In this study we first describe a statistical analysis of DNA methylation data (both cross-sectional and longitudinal) derived from tissue samples from 50 BE patients to identify and validate a set of 67 CpG dinucleotides in 51 CpG islands that undergo age-related methylomic drift. Next, we describe how this information can be used to estimate a patient’s BE dwell time. We introduce a Bayesian model that incorporates longitudinal methylomic drift rates, patient age, and methylation data from individually paired BE and normal squamous tissue samples to estimate patient-specific BE onset times. Our application of the model to 30 sporadic BE patients’ methylomic profiles first exposes a wide heterogeneity in patient-specific BE onset times. Furthermore, independent application of this method to a cohort of 22 familial BE (FBE) patients reveals significantly earlier mean BE onset times. Our analysis supports the conjecture that differential methylomic drift occurs in BE (relative to normal squamous tissue) and hence allows quantitative estimation of the time that a BE patient has lived with BE.


Gut | 2017

BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis

Bobak Parang; Andrew M. Kaz; Caitlyn W. Barrett; Sarah P. Short; Wei Ning; Cody Keating; Mukul K. Mittal; Rishi D. Naik; Mary Kay Washington; Frank Revetta; J. Joshua Smith; Xi Chen; Keith T. Wilson; Thomas Brand; David M. Bader; William P. Tansey; Ru Chen; Teresa A. Brentnall; William M. Grady; Christopher S. Williams

Objective Blood vessel epicardial substance (BVES) is a tight junction-associated protein that regulates epithelial-mesenchymal states and is underexpressed in epithelial malignancy. However, the functional impact of BVES loss on tumourigenesis is unknown. Here we define the in vivo role of BVES in colitis-associated cancer (CAC), its cellular function and its relevance to patients with IBD. Design We determined BVES promoter methylation status using an Infinium HumanMethylation450 array screen of patients with UC with and without CAC. We also measured BVES mRNA levels in a tissue microarray consisting of normal colons and CAC samples. Bves−/− and wild-type mice (controls) were administered azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce tumour formation. Last, we used a yeast two-hybrid screen to identify BVES interactors and performed mechanistic studies in multiple cell lines to define how BVES reduces c-Myc levels. Results BVES mRNA was reduced in tumours from patients with CAC via promoter hypermethylation. Importantly, BVES promoter hypermethylation was concurrently present in distant non-malignant-appearing mucosa. As seen in human patients, Bves was underexpressed in experimental inflammatory carcinogenesis, and Bves−/− mice had increased tumour multiplicity and degree of dysplasia after AOM/DSS administration. Molecular analysis of Bves−/− tumours revealed Wnt activation and increased c-Myc levels. Mechanistically, we identified a new signalling pathway whereby BVES interacts with PR61α, a protein phosphatase 2A regulatory subunit, to mediate c-Myc destruction. Conclusion Loss of BVES promotes inflammatory tumourigenesis through dysregulation of Wnt signalling and the oncogene c-Myc. BVES promoter methylation status may serve as a CAC biomarker.

Collaboration


Dive into the Andrew M. Kaz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amitabh Chak

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Joseph Willis

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Yanxin Luo

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Chao Jen Wong

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanford D. Markowitz

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Slavomir Dzieciatkowski

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Chao-Jen Wong

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Kelly T. Carter

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge