Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew M. Ullman is active.

Publication


Featured researches published by Andrew M. Ullman.


Journal of the American Chemical Society | 2014

Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes

Andrew M. Ullman; Yi Liu; Michael Huynh; D. Kwabena Bediako; Hongsen Wang; Bryce L. Anderson; David C. Powers; John J. Breen; Héctor D. Abruña; Daniel G. Nocera

The observed water oxidation activity of the compound class Co4O4(OAc)4(Py–X)4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co4O4 molecular cubanes. Differential electrochemical mass spectrometry is used to characterize the fate of glassy carbon at water oxidizing potentials and demonstrate that such electrode materials should be used with caution for the study of water oxidation catalysis.


Journal of the American Chemical Society | 2014

Water Oxidation Catalysis by Co(II) Impurities in Co(III)[subscript 4]O[subscript 4] Cubanes

Andrew M. Ullman; Yi Liu; Michael Huynh; D. Kwabena Bediako; Hongsen Wang; Bryce L. Anderson; David C. Powers; John J. Breen; Héctor D. Abruña; Daniel G. Nocera; Cornell ; Providence

The observed water oxidation activity of the compound class Co4O4(OAc)4(Py–X)4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co4O4 molecular cubanes. Differential electrochemical mass spectrometry is used to characterize the fate of glassy carbon at water oxidizing potentials and demonstrate that such electrode materials should be used with caution for the study of water oxidation catalysis.


Journal of the American Chemical Society | 2016

Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts

Andrew M. Ullman; Casey N. Brodsky; Nancy Li; Shao Liang Zheng; Daniel G. Nocera

Differential electrochemical mass spectrometry (DEMS) analysis of the oxygen isotopologues produced by (18)O-labeled Co-OEC in H2(16)O reveals that water splitting catalysis proceeds by a mechanism that involves direct coupling between oxygens bound to dicobalt edge sites of Co-OEC. The edge site chemistry of Co-OEC has been probed by using a dinuclear cobalt complex. (17)O NMR spectroscopy shows that ligand exchange of OH/OH2 at Co(III) edge sites is slow, which is also confirmed by DEMS experiments of Co-OEC. In borate (Bi) and phosphate (Pi) buffers, anions must be displaced to allow water to access the edge sites for an O-O bond coupling to occur. Anion exchange in Pi is slow, taking days to equilibrate at room temperature. Conversely, anion exchange in Bi is rapid (kassoc = 13.1 ± 0.4 M(-1) s(-1) at 25 °C), enabled by facile changes in boron coordination. These results are consistent with the OER activity of Co-OEC in Bi and Pi. The Pi binding kinetics are too slow to establish a pre-equilibrium sufficiently fast to influence the oxygen evolution reaction (OER), consistent with the zero-order dependence of Pi on the OER current density; in contrast, Bi exchange is sufficiently facile such that Bi has an inhibitory effect on OER. These complementary studies on Co-OEC and the dicobalt edge site mimic allow for a direct connection, at a molecular level, to be made between the mechanisms of heterogeneous and homogeneous OER.


Journal of the American Chemical Society | 2016

X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction

Ryan G. Hadt; Dugan Hayes; Casey N. Brodsky; Andrew M. Ullman; D. Casa; M. H. Upton; Daniel G. Nocera; Lin X. Chen

The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co(III)4O4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the t2g-based redox-active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co4O4. Guided by the data, calculations show that electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E(0) over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal-metal and antibonding interactions across the cluster.


Journal of the American Chemical Society | 2013

Mechanism of cobalt self-exchange electron transfer.

Andrew M. Ullman; Daniel G. Nocera

A heptanuclear cobalt cluster was synthesized in two different oxidation states, Co(II)7 and a mixed valence Co(III)Co(II)6, as a soluble model of a cobalt-phosphate/borate (Co-OEC) water splitting catalyst. Crystallographic characterization indicates similar cluster cores, distinguished primarily at the central Co atom. An anion associates to the cluster cores via hydrogen bonding. Using an isotope exchange method, an anomalously slow self-exchange electron transfer rate constant (k(obs) = 1.53 × 10(-3) M(-1) s(-1) at 40 °C and 38 mM [OTf] in MeCN), as compared to that predicted from semiclassical Marcus theory, supports a charge transfer process that is accelerated by dissociation of the anion from the oxidized cluster. This mechanism sheds light on the inverse dependence of anions in the self-repair mechanism of Co-OECs. Moreover, because H2O cannot directly bridge cobalt centers, owing to the encapsulation of the central Co within the cluster core, the observed results address a long-standing controversy surrounding the Co(2+/3+) self-exchange electron transfer reaction of the hexaaqua complex.


Journal of the American Chemical Society | 2016

Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential

Guillaume Passard; Andrew M. Ullman; Casey N. Brodsky; Daniel G. Nocera

The selective four electron, four proton, electrochemical reduction of O2 to H2O in the presence of a strong acid (TFA) is catalyzed at a dicobalt center. The faradaic efficiency of the oxygen reduction reaction (ORR) is furnished from a systematic electrochemical study by using rotating ring disk electrode (RRDE) methods over a wide potential range. We derive a thermodynamic cycle that gives access to the standard potential of O2 reduction to H2O in organic solvents, taking into account the presence of an exogenous proton donor. The difference in ORR selectivity for H2O vs H2O2 depends on the thermodynamic standard potential as dictated by the pKa of the proton donor. The model is general and rationalizes the faradaic efficiencies reported for many ORR catalytic systems.


Inorganic Chemistry | 2016

Transforming MOFs for Energy Applications Using the Guest@MOF Concept

Andrew M. Ullman; Jonathan W. Brown; Michael E. Foster; François Léonard; Vitalie Stavila; Mark D. Allendorf

As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.


Topics in Current Chemistry | 2015

Catalytic Oxygen Evolution by Cobalt Oxido Thin Films.

D. Kwabena Bediako; Andrew M. Ullman; Daniel G. Nocera

The contemporary demand to generate fuels from solar energy has stimulated intense effort to develop water splitting catalysts that can be coupled to light-absorbing materials. Cobalt oxido catalyst (Co-OECs) films deposited from buffered Co(II) solutions have emerged as arguably the most studied class of heterogeneous oxygen evolution catalysts. The interest in these materials stems from their formation by self-assembly, their self-healing properties, and their promising catalytic activity under a variety of conditions. The structure and function of these catalysts are reviewed here together with studies of molecular Co-O cluster compounds, which have proven invaluable in elucidating the chemistry of the Co-OECs.


Angewandte Chemie | 2016

Activation of Electron‐Deficient Quinones through Hydrogen‐Bond‐Donor‐Coupled Electron Transfer

Amanda K. Turek; David James Hardee; Andrew M. Ullman; Daniel G. Nocera; Eric N. Jacobsen

Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron-deficient quinones are used. We have successfully employed HBD-coupled electron transfer as a strategy to activate electron-deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone-mediated model synthetic transformation.


Inorganic Chemistry | 2014

Electron-Transfer Studies of a Peroxide Dianion

Andrew M. Ullman; Xianru Sun; Daniel J. Graham; Nazario Lopez; Matthew Nava; Rebecca De Las Cuevas; Peter Müller; Elena V. Rybak-Akimova; Christopher C. Cummins; Daniel G. Nocera

A peroxide dianion (O2(2-)) can be isolated within the cavity of hexacarboxamide cryptand, [(O2)⊂mBDCA-5t-H6](2-), stabilized by hydrogen bonding but otherwise free of proton or metal-ion association. This feature has allowed the electron-transfer (ET) kinetics of isolated peroxide to be examined chemically and electrochemically. The ET of [(O2)⊂mBDCA-5t-H6](2-) with a series of seven quinones, with reduction potentials spanning 1 V, has been examined by stopped-flow spectroscopy. The kinetics of the homogeneous ET reaction has been correlated to heterogeneous ET kinetics as measured electrochemically to provide a unified description of ET between the Butler-Volmer and Marcus models. The chemical and electrochemical oxidation kinetics together indicate that the oxidative ET of O2(2-) occurs by an outer-sphere mechanism that exhibits significant nonadiabatic character, suggesting that the highest occupied molecular orbital of O2(2-) within the cryptand is sterically shielded from the oxidizing species. An understanding of the ET chemistry of a free peroxide dianion will be useful in studies of metal-air batteries and the use of [(O2)⊂mBDCA-5t-H6](2-) as a chemical reagent.

Collaboration


Dive into the Andrew M. Ullman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Léonard

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge